Open Access
Issue
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
Article Number 03002
Number of page(s) 10
Section IoT, AI and Data Analytics
DOI https://doi.org/10.1051/e3sconf/202450803002
Published online 05 April 2024
  1. M. Rogowski, S. Aseeri, D. Keyes, L. Dalcin, Mpi4py.futures: MPI-Based Asynchronous Task Execution for Python, IEEE Transactions on Parallel and Distributed Systems 34(2), 611-622 (2023) doi: 10.1109/TPDS.2022.3225481 [CrossRef] [Google Scholar]
  2. N. Nagy et al., Phishing URLs Detection Using Sequential and Parallel ML Techniques: Comparative Analysis, Sensors 23(7), 3467 (2023) doi: 10.3390/s23073467 [CrossRef] [PubMed] [Google Scholar]
  3. S. Chakraborty, A. Cortesi, N. Chaki, A uniform representation of multi-variant data in intensive-query databases, Innovations Syst. Softw. Eng. 12, 163-176 (2016) doi: 10.1007/s11334-016-0275-9 [CrossRef] [Google Scholar]
  4. Md. G. Rashed, R. Ahsan, Python in Computational Science: Applications and Possibilities, International Journal of Computer Applications 46(20), 26-30 (2018) doi: 10.5120/7058-9799 [CrossRef] [Google Scholar]
  5. F. J. M. Arboleda, M. R. Arias, J. A. H. Riveros, Performance of Parallelism in Python and C++, IAENG International Journal of Computer Science 50(2), 1-13 (2023) [Google Scholar]
  6. H. Chemerys et al., Fundamentals of UX/UI design in professional preparation of the future bachelor of computer science, AIP Conference Proceedings 2453(1), 030025 (2022) doi: 10.1063/5.0094433 [CrossRef] [Google Scholar]
  7. N. Watkinson, A. Shivam, A. Nicolau, A. Veidenbaum, Teaching parallel computing and dependence analysis with python, In Proceedings 2019 IEEE 33rd International Parallel and Distributed Processing Symposium Workshops (IPDPSW 2019), 320-325 (2019) doi: 10.1109/IPDPSW.2019.00061 [Google Scholar]
  8. Y. O. Sitsylitsyn, V. V. Osadchyi, V. S. Kruglyk, O. H. Kuzminska, Modeling training content for software engineers in parallel computing, Journal of Physics: Conference Series 2611, 012017 (2023) doi: 10.1088/1742-6596/2611/1/012017 [CrossRef] [Google Scholar]
  9. L. D. Dalcin, R. R. Paz, P. A. Kler, A. Cosimo, Parallel distributed computing using Python, Advances in Water Resources, Advances in Water Resources 34(9), 1124-1139 (2011) doi: 10.1016/j.advwatres.2011.04.013 [CrossRef] [Google Scholar]
  10. C. Rossant, B. Fontaine, D. F. M. Goodman, Playdoh: a lightweight Python library for distributed computing and optimisation, Journal of Computational Science 4(5), 352-359 (2013) doi: 10.1016/j.jocs.2011.06.002 [CrossRef] [Google Scholar]
  11. T. G. Mattson et al., PyOMP: Multithreaded Parallel Programming in Python, Computing in Science and Engineering 23(6), 77-80 (2021) doi: 10.1109/MCSE.2021.3128806 [CrossRef] [Google Scholar]
  12. A. Aziz et al., Python Parallel Processing and Multiprocessing: A Rivew, Academic Journal of Nawroz University 10(3), 345-354 (2021) doi: 10.25007/ajnu.v10n3a1145 [CrossRef] [Google Scholar]
  13. S. Choporov, S. Gomenyuk, O. Kudin, A. Lisnyak, Design patterns for object-oriented scientific software, CEUR Workshop Proceedings 2105, 441–444 (2018) [Google Scholar]
  14. A. Saabith, M. Fareez, T. Vinothraj, Python current trend applications-an overview, International Journal of Advance Engineering and Research Development 6(10), 6–12 (2019) [Google Scholar]
  15. S. Sharov et al., Using MOOC to Learn the Python Programming Language, International Journal of Emerging Technologies in Learning 18(2), 17–32 (2023) doi: 10.3991/ijet.v18i02.36431 [CrossRef] [Google Scholar]
  16. T. Steininger, M. Greiner, F. Beaujean, T. Enßlin, D2o: a distributed data object for parallel high-performance computing in Python, Journal of Big Data 3(17), 1-34 (2016) doi: 10.1186/s40537-016-0052-5 [CrossRef] [Google Scholar]
  17. S. Kurzadkar et al., Hotel Management System Using Python Tkinter GUI, International Journal of Computer Science and Mobile Computing 11(1), 204–208 (2022) doi: 10.47760/ijcsmc.2022.v11i01.027 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.