Open Access
Issue |
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 11 | |
Section | IoT, AI and Data Analytics | |
DOI | https://doi.org/10.1051/e3sconf/202450803010 | |
Published online | 05 April 2024 |
- Jordan, M.I., Mitchell, T.M. (2015). Machine learning: trends, perspectives, and prospects. Science, 349: 255-260. https://doi.org/10.1126/science.aaa8415. [CrossRef] [PubMed] [Google Scholar]
- Wolfert, S., Ge, L., Verdouw, C., Bogaardt, M.J. (2017). Big data in smart farming-a review. Agric. Syst. 153: 69-80. https://doi.org/10.1016/j.agsy.2017.01.023. [CrossRef] [Google Scholar]
- Shekoofa, A., Emam, Y., Shekoufa, N., Ebrahimi, M., Ebrahimie, E. (2014). Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture. PLOS ONE, 9: e97288. [CrossRef] [Google Scholar]
- Basso, B., Liu, L. (2019). Seasonal crop yield forecast: methods, applications, and accuracies. Adv. Agron., 154: 201-255. https://doi.org/10.1016/bs.agron.2018.11.002. [CrossRef] [Google Scholar]
- Van Klompenburg, T., Kassahun, A., Catal, C. (2020). Crop yield prediction using machine learning: a systematic literature review. Computers and Electronics in Agriculture, 177: 105709. https://doi.org/10.1016/j.compag.2020.105709. [CrossRef] [Google Scholar]
- Hallaua, L., Neumannbc, M., Klattc, B., Kleinhenzd, B., Kleind, T., Kuhnd, C., Rohrig, M., Bauckhageb, C., Kerstingf, K., Mahleina, A.K., Steinera, U., Oerkea, E.C. (2018). Automated identification of sugar beet diseases using smartphones. Plant Pathology, 67: 399-410. [CrossRef] [Google Scholar]
- Skaloudova, B., Krvan, V., Zemek, R., (2006). Computer-assisted estimation of leaf damage caused by spider mites. Computers and Electronics in Agriculture 53: 81-91. [CrossRef] [Google Scholar]
- Crous, P.W., Braun, U. (2003). Mycosphaerella and its anamorphs. 1. names published in Cercospora and passalora. CBS Biodiversity Series 1. Utrecht, Netherlands: CBS. [Google Scholar]
- Zhou, R., Kaneko, S., Tanaka, F., Kayamori, M., Shimizu, M., (2014). Disease detection of Cercospora leaf spot by robust template matching. Computers and Electronics in Agriculture, 108: 58-70. [CrossRef] [Google Scholar]
- Rumpf, T., Mahlein, A.K., Steiner, U., Oerke, E.C., Dehne, H.W., Plümer, L. (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance, Computers and Electronics in Agriculture, 74(1): 91-99. [CrossRef] [Google Scholar]
- Ishida, T., Kurihara, J., Viray, F.A., Namuco, S.B., Paringit, E.C., Perez, G.J., Takahashi, Y., Marciano, J.J. (2018). A novel approach for vegetation classification using UAV-based hyperspectral imaging, Computers and Electronics in Agriculture, 144: 80-85. [CrossRef] [Google Scholar]
- Peña, J., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A., López-Granados, F. (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors, 15(3): 5609. [CrossRef] [Google Scholar]
- Xiaogang, S., Yan, X., Tsai, C.L. (2012). Linear regression. Wiley interdisciplinary reviews: Computational Statistics 4.3 (2012): 275-294. [Google Scholar]
- Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Computing Surveys, 28(1): 71-72. [CrossRef] [Google Scholar]
- Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., Scholkopf, B. (1998). T. applications, “Support vector machines,” IEEE Intelligent Systems, vol. 13(4): 18-28. [CrossRef] [Google Scholar]
- Anguita, D., Ghio, A., Greco, N., Oneto, L., Ridella, S. (2010). Model selection for support vector machines: Advantages and disadvantages of the machine learning theory. The 2010 international joint conference on neural networks (IJCNN), IEEE. [Google Scholar]
- Peterson, L.E. (2009). K-nearest neighbor. Scholarpedia, 4(2): 1883. [CrossRef] [Google Scholar]
- Carlos E.P., López, M.M., Pinzón, J. E., José M. Angulo. (1996). The Gaussian distribution revisited. Advances in Applied Probability 28(2): 500-524. http://dx.doi.org/10.2307/1428069. [CrossRef] [Google Scholar]
- Sperandei, S. (2014). Understanding logistic regression analysis. Biochemia medica, 24(1): 12-18. [CrossRef] [Google Scholar]
- Ontivero-Ortega, M., Lage-Castellanos, A., Valente, G., Goebel, R., Valdes-Sosa, M. (2017). Fast Gaussian Naïve Bayes for searchlight classification analysis. Neuroimage, 163: 471-479. [CrossRef] [Google Scholar]
- Rokach, L., Maimon, O. (2005). Decision trees. Data mining and knowledge discovery handbook (2005): 165-192. [Google Scholar]
- Gutiérrez, P.A., López-Granados, F., Peña-Barragán, J.M., Jurado-Expósito, M., Hervás-Martínez, C. (2008). Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture, 64(2): 293-306. [CrossRef] [Google Scholar]
- Barbedo, J.C.A. (2016). A review on the main challenges in automatic plant disease identification based on visible range images. Biosystems Engineering, 144: 52-60. [CrossRef] [Google Scholar]
- Camargo, A., Smith, J.S. (2009). Image pattern classification for the identification of disease causing agents in plants. Computers and Electronics in Agriculture, 66(2): 121-125. 10.1016/j.compag.2009.01.003 [CrossRef] [Google Scholar]
- Ruß, G., (2009). Data mining of agricultural yield data: A comparison of regression models. In: Advances in Data Mining. Applications and Theoretical Aspects. Springer-Verlag, pp. 24-37. [Google Scholar]
- Vapnik, V.N. (2000) The nature of statistical learning theory. 2nd Edition, Springer, Berlin. http://dx.doi. org/10.1007/978-1-4757-3264-1. [CrossRef] [Google Scholar]
- Singh, V., Sharma, N., Singh, S. (2020). A review of ımaging techniques for plant disease detection. Artificial Intelligence in Agriculture, 4: 229-242. https://doi.org/10.1016/j.aiia.2020.10.002 [CrossRef] [Google Scholar]
- Huang, S., Tang, L., Hupy, J.P., Wang, Y., Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 32: 1-6. https://doi.org/10.1007/s11676-020-01155-1 [CrossRef] [Google Scholar]
- Xue, J., Su, B. (2017). Significant remote sensing vegetation indices: a review of developments and applications. Journal of Sensors. 2017:1353691. [CrossRef] [Google Scholar]
- Vicente-Serrano, S.M., Camarero, J.J., Olano, J.M., Martín-Hernández, N., Peña-Gallardo, M., Tomás-Burguera, M., Gazol, A., Azorin-Molina, C., Bhuyan, U., El Kenawy, A. (2016). Diverse relationships between forest growth and the normalized difference vegetation index at a global scale. Remote Sens Environ 187: 14-29. [CrossRef] [Google Scholar]
- Chavez, R.O., Clevers, J.G.P.W., Decuyper, M., De Bruin, S., Herold, M. (2016). 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J Arid Environ, 124:292-303. [CrossRef] [Google Scholar]
- Butt, B. (2018). Environmental indicators and governance. Current Opinion in Environmental Sustainability, 32:84-89. [CrossRef] [Google Scholar]
- Patil, B.M., Burkpalli, V. (2021). A perspective view of cotton leaf image classification using machine learning algorithms using WEKA. Advances in Human-Computer Interaction, 2021: 1-15. https://doi.org/10.1155 /2021/9367778 [CrossRef] [Google Scholar]
- Behmann, J., Mahlein, A.K., Rumpf, T., Römer, C., Plümer, L. (2015). A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precision Agriculture, 16: 239-60. [CrossRef] [Google Scholar]
- Görlich, F., Marks, E., Mahlein, A.K., König, K., Lottes, P., Stachniss, C. (2021). UAV-based classification of cercospora leaf spot using RGB images. Drones, 2021(5): 34. https://doi.org/10.3390/ drones5020034 [CrossRef] [Google Scholar]
- Jenks, G.F. (2023). Jenks natural breaks optimization. Wikipedia, https://en.wikipedia.org/wiki/Jenks_natural_ breaks_optimization [Google Scholar]
- Pix4d. (2023). How to edit the color mapping in the index calculator. https://support.pix4d.com/hc/en-us/ articles/202560519-How-to-edit-the-Color-Mapping-in-the-Index-Calculator [Google Scholar]
- TAGEM. (2017) Plant diseases and weed control technical instructions. TAGEM Department of Plant Health Research. [Google Scholar]
- Gankhuyag, B., Baasan, N. (2021). Comparative study of SAVI and NDVI vegetation indices in using a multispectral camera. Journal of IMDT, 2021(3): 90-97. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.