Open Access
Issue
E3S Web of Conf.
Volume 508, 2024
International Conference on Green Energy: Intelligent Transport Systems - Clean Energy Transitions (GreenEnergy 2023)
Article Number 03011
Number of page(s) 7
Section IoT, AI and Data Analytics
DOI https://doi.org/10.1051/e3sconf/202450803011
Published online 05 April 2024
  1. S. A.Chaudhry, H. Naqvi, M. K. Khan, An enhanced lightweight anonymous biometric based authentication scheme for TMIS (Multimedia Tools and Applications - 2017) [Google Scholar]
  2. Hafemann, L.G. et.al., Offline handwritten signature verification — Literature review / Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) – 2017. 8p. DOI:10.1109/ipta.2017.8310112. [Google Scholar]
  3. Hadeel J.Jriash. International Journal of Computer Science and Mobile Computing 4, 10, 403-412 (2015) [Google Scholar]
  4. Foroozandeh, A. et.al., Offline Handwritten Signature Verification and Recognition Based on Deep Transfer Learning International Conference on Machine Vision and Image Processing. – (2020). DOI:10.1109/mvip49855.2020.918748. [Google Scholar]
  5. Hafemann L. G. et.al., Writer-independent feature learning for Offline Signature Verification using Deep Convolutional Neural Networks / International Joint Conference on Neural Networks (IJCNN) – P. 2576–2994 (2016). DOI:10.1109/ijcnn.2016.7727521. [Google Scholar]
  6. Akhundjanov U.Y., Starovoitov V.V., System Analysis and Applied Information Science 1, 12-18 (2022) [Google Scholar]
  7. A. B. Jagtap, D. D. Sawat, R. S. Hegadi, Siamese Network for Learning Genuine and Forged Offline Signature Verification / // Recent Trends in Image Processing and Pattern Recognition, P. 131–139 (2019). DOI:10.1007/978-981-13-9187-3_12. [Google Scholar]
  8. Impedovo S., et.al., Verification of Handwritten Signatures: an Overview /14th International Conference on Image Analysis and Processing. p.191-196 (2007). DOI:10.1109/iciap.2007.4362778. [Google Scholar]
  9. Akhundjanov U.Y., Starovoitov V.V., System Analysis and Applied Information Science. 1, 4-9 (2022) [Google Scholar]
  10. Fazilov, S. K., Mirzaev, N. N., Radjabov, S. S., Dadakhanov, M. K., Asraev, M. A., Shamsiev, F. M. (2019). Compusoft, 8(12), 3514-3524. [Google Scholar]
  11. Salomov, U., Abduraxmonov, S., Urishev, O., & Juraev, N. (2024). Calculation of the water flow rate of Micro HPP depending on the water fall angle in ideal cases. In BIO Web of Conferences (Vol. 84, p. 05028). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Akhundjanov U.Yu. My_signature_verifiction / U.Yu. Akhundjanov // https://github.com [Electronic resource]. – 2022. Mode of access: https://github.com/MrUmidjan90/My-signature verification/blob/main/Bingali.ipynb– Date of access: 27 February 2022. [Google Scholar]
  13. Jagtap, A. B. Siamese Network for Learning Genuine and Forged Offline Signature Verification / A. B. Jagtap, D. D. Sawat, R. S. Hegadi // Recent Trends in Image Processing and Pattern Recognition – 2019. – P. 131–139. DOI:10.1007/978-981-13-9187-3_12. [Google Scholar]
  14. Starovoitov V. V., Golub Y. I. Comparative study of quality estimation of binary classification. Informatics. – 2020. – Vol. 17, no. 1, P. 87−101 [CrossRef] [Google Scholar]
  15. Hafemann L.G.Analyzing features learned for offline signature verification using deep cnns / L.G. Hafemann, R. Sabourin, L.S. Oliveira // 23rd international conference on Pattern recognition (ICPR). IEEE – 2016. – P. 2989–2994. DOI:10.1109/icpr.2016.7900092. [Google Scholar]
  16. Hafemann L. G. Writer-independent feature learning for Offline Signature Verification using Deep Convolutional Neural Networks / L.G. Hafemann, R. Sabourin, L.S. Oliveira // International Joint Conference on Neural Networks (IJCNN) – 2016. –P. 2576–2994. DOI:10.1109/ijcnn.2016.7727521. [Google Scholar]
  17. Jagtap, A. B. Siamese Network for Learning Genuine and Forged Offline Signature Verification / A. B. Jagtap, D. D. Sawat, R. S. Hegadi // Recent Trends in Image Processing and Pattern Recognition – 2019. – P. 131–139. DOI:10.1007/978-981-13-9187-3_12. [Google Scholar]
  18. Akhundjanov U. at al. Distribution of local curvature values as a sign for static signature verification. //BIO Web of Conferences. – EDP Sciences, 2024. [Google Scholar]
  19. Akhundjanov U. at al. Handwritten signature preprocessing for off-line recognition systems. // BIO Web of Conferences. – EDP Sciences, 2024. [Google Scholar]
  20. Abdulkhaev, Z., Abdujalilova, S., Usmonov, M., Askarov, K., & Nazirova, R. (2024). Determination of the useful working coefficient (UWC) of the heating system. In BIO Web of Conferences (Vol. 84, p. 05040). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  21. Abdulkhaev, Z. E., Madraximov, M. M., Orzimatov, J. T., & Abdurazaqov, A. M. (2023). Transition processes during the start-up of the pumping unit of happ. In E3S Web of Conferences (Vol. 420, p. 07023). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  22. Madraximov, M., Abdulkhaev, Z., Qosimov, A., Sirojiddinov, D., Sattorov, A., & Arifjanov, A. (2023). Mitigating groundwater rise in Fergana city: A comprehensive analysis and drainage strategy. In E3S Web of Conferences (Vol. 452, p. 02025). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  23. Ibrokhimov, A., Orzimatov, J., Usmonov, M., Otakulov, B., & Mirzababayeva, S. (2024). Mathematical modeling of particle movement in laminar flow in a pipe. In BIO Web of Conferences (Vol. 84, p. 02026). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  24. Abdulkhaev, Z., Abdujalilova, S., & Abumalikov, R. (2023). Control of heat transfer ability of radiators using thermovalve. Journal of Construction and Engineering Technology, 1(1), 1-4. [Google Scholar]
  25. Madaliev, M., Qurbanova, N., & Rustamova, X. (2023). Numerical decisions of the problem of the centrifugal separator based on the sarc turbulence model. Journal of Construction and Engineering Technology, 1(1), 1-6. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.