Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01018
Number of page(s) 18
DOI https://doi.org/10.1051/e3sconf/202451101018
Published online 10 April 2024
  1. S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, (2022). doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
  2. G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, (2022). doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
  3. P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, (2023). doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  4. M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Singleand Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, (2022). doi: 10.3390/MA15165551. [CrossRef] [PubMed] [Google Scholar]
  5. Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, (2022). doi: 10.3390/SU14137913. [Google Scholar]
  6. M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, p. 01205 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  7. C. Mohan, V. Kumar, “Ion-selective Electrodes Based on PVC Membranes for Potentiometric Sensor Applications: A Review” International Journal of Membrane Science and Technology, vol. 8, pp 76–84, (2021). doi : 10.15379/2410-1869.2021.08.02.06 [CrossRef] [Google Scholar]
  8. M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, p. 01201 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  9. M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [CrossRef] [EDP Sciences] [Google Scholar]
  10. M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, p. 01203 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  11. R. J. J. Molu, S. Raoul Dzonde Naoussi, P. Wira, W. F. Mbasso, S. T. Kenfack, and S. Kamel, “Optimization-based energy management system for grid-connected photovoltaic/battery microgrids under uncertainty,” Case Studies in Chemical and Environmental Engineering, vol. 8, (2023). doi: 10.1016/j.cscee.2023.100464. [Google Scholar]
  12. T. Hai, A. K. Alazzawi, J. Mohamad Zain, and K. Muranaka, “Efficient short-term energy management of a renewable energy integrated microgrid using modified manta ray foraging optimization,” Sustainable Energy Technologies and Assessments, vol. 54, (2022). doi: 10.1016/j.seta.2022.102802. [Google Scholar]
  13. A. Chakraborty and S. Ray, “Economic and environmental factors based multi-objective approach for optimizing energy management in a microgrid,” Renew Energy, p. 119920, (2024). Accessed: Jan. 19, 2024. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0960148123018359 [CrossRef] [Google Scholar]
  14. Y. B. Beyene, G. B. Worku, and L. B. Tjernberg, “On the design and optimization of distributed energy resources for sustainable grid-integrated microgrid in Ethiopia,” Int J Hydrogen Energy, vol. 48, no. 78, pp. 30282–30298, (2023). doi: 10.1016/j.ijhydene.2023.04.192. [CrossRef] [Google Scholar]
  15. Z. Ullah, H. S. Qazi, A. Alferidi, M. Alsolami, B. Lami, and H. M. Hasanien, “Optimal energy trading in cooperative microgrids considering hybrid renewable energy systems,” Alexandria Engineering Journal, vol. 86, pp. 23–33, (2024). doi: 10.1016/j.aej.2023.11.052. [CrossRef] [Google Scholar]
  16. B. Cortés-Caicedo, L. F. Grisales-Noreña, O. D. Montoya, and R. I. Bolaños, “Optimization of BESS placement, technology selection, and operation in microgrids for minimizing energy losses and CO2 emissions: A hybrid approach,” J Energy Storage, vol. 73, (2023). doi: 10.1016/j.est.2023.108975. [Google Scholar]
  17. H. Zhang, Y. Ma, K. Yuan, M. Khayatnezhad, and N. Ghadimi, “Efficient design of energy microgrid management system: A promoted Remora optimization algorithm-based approach,” Heliyon, vol. 10, no. 1, (2024). doi: 10.1016/j.heliyon.2023.e23394. [Google Scholar]
  18. S. Imchen and D. K. Das, “Scheduling of distributed generators in an isolated microgrid using opposition based Kho-Kho optimization technique,” Expert Syst Appl, vol. 229, (2023). doi: 10.1016/j.eswa.2023.120452. [CrossRef] [Google Scholar]
  19. C. Mohan, N. Kumari, J. Robinson, “Sustainable and environmental friendly energy materials” Materials Today: Proceedings, vol. 69, pp 494498, (2022). doi : 10.1016/j.matpr.2022.09.187 [Google Scholar]
  20. N. Swain, N. Sinha, and S. Behera, “Stabilized frequency response of a microgrid using a two-degree-of-freedom controller with African vultures optimization algorithm,” ISA Trans, vol. 140, pp. 412–425, (2023). doi: 10.1016/j.isatra.2023.05.009. [CrossRef] [PubMed] [Google Scholar]
  21. K. Zhou, Z. Fei, and R. Hu, “Hybrid robust decentralized optimization of emission-aware multi-energy microgrids considering multiple uncertainties,” Energy, vol. 265, (2023). doi: 10.1016/j.energy.2022.126405. [Google Scholar]
  22. “Hybrid Energy Microgrids: A Comparative Study of Optimization Techniques Search | ScienceDirect.com.” Accessed: Jan. 19, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Hybrid%20Energy%20Microgrids%3A%20A%20Comparative%20Study%20of%20Optimization%20Techniques [Google Scholar]
  23. J. J. Bouendeu, F. A. Talla Konchou, M. N. B. Astrid, M. F. Elmorshedye, and T. René, “A systematic techno-enviro-socio-economic design optimization and power quality of hybrid renewable microgrids,” Renew Energy, vol. 218, (2023). doi: 10.1016/j.renene.2023.119297. [CrossRef] [Google Scholar]
  24. T. N. Prasad et al., “Power management in hybrid ANFIS PID based AC– DC microgrids with EHO based cost optimized droop control strategy,” Energy Reports, vol. 8, pp. 15081–15094, (2022). doi: 10.1016/j.egyr.2022.11.014. [CrossRef] [Google Scholar]
  25. A. Chakraborty and S. Ray, “Economic and environmental factors based multi-objective approach for optimizing energy management in a microgrid,” Renew Energy, vol. 222, p. 119920, (2024). doi: 10.1016/J.RENENE.2023.119920. [CrossRef] [Google Scholar]
  26. S. A. Shezan et al., “Optimization and control of solar-wind islanded hybrid microgrid by using heuristic and deterministic optimization algorithms and fuzzy logic controller,” Energy Reports, vol. 10, pp. 3272–3288, (2023). doi: 10.1016/j.egyr.2023.10.016. [CrossRef] [Google Scholar]
  27. S. Choudhury et al., “Energy management and power quality improvement of microgrid system through modified water wave optimization,” Energy Reports, vol. 9, pp. 6020–6041, (2023). doi: 10.1016/j.egyr.2023.05.068. [CrossRef] [Google Scholar]
  28. H. Chaduvula and D. Das, “Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization,” Energy, vol. 282, (2023). doi: 10.1016/j.energy.2023.128909. [CrossRef] [Google Scholar]
  29. B. Dey, S. Raj, S. Mahapatra, and F. P. G. Márquez, “Optimal scheduling of distributed energy resources in microgrid systems based on electricity market pricing strategies by a novel hybrid optimization technique,” International Journal of Electrical Power and Energy Systems, vol. 134, (2022). doi: 10.1016/j.ijepes.2021.107419. [Google Scholar]
  30. V. Anantha Krishnan and N. Senthil Kumar, “Robust soft computing control algorithm for sustainable enhancement of renewable energy sources based microgrid: A hybrid Garra rufa fish optimization – Isolation forest approach,” Sustainable Computing: Informatics and Systems, vol. 35, (2022). doi: 10.1016/j.suscom.2022.100764. [CrossRef] [Google Scholar]
  31. M. M. Elymany, M. A. Enany, and N. A. Elsonbaty, “Hybrid optimizedANFIS based MPPT for hybrid microgrid using zebra optimization algorithm and artificial gorilla troops optimizer,” Energy Convers Manag, vol. 299, (2024). doi: 10.1016/j.enconman.2023.117809. [CrossRef] [Google Scholar]
  32. L. Yan, X. Deng, and J. Li, “Integrated energy hub optimization in microgrids: Uncertainty-aware modeling and efficient operation,” Energy, p. 130391, (2024). doi: 10.1016/J.ENERGY.2024.130391. [CrossRef] [Google Scholar]
  33. J. Datta and D. Das, “Energy management of multi-microgrids with renewables and electric vehicles considering price-elasticity based demand response: A bi-level hybrid optimization approach,” Sustain Cities Soc, vol. 99, (2023). doi: 10.1016/j.scs.2023.104908. [CrossRef] [Google Scholar]
  34. N. Alamir, S. Kamel, T. F. Megahed, M. Hori, and S. M. Abdelkader, “Developing Hybrid Demand Response Technique for Energy Management in Microgrid Based on Pelican Optimization Algorithm,” Electric Power Systems Research, vol. 214, (2023). doi: 10.1016/j.epsr.2022.108905. [CrossRef] [Google Scholar]
  35. R. P. Kumar and G. Karthikeyan, “A multi-objective optimization solution for distributed generation energy management in microgrids with hybrid energy sources and battery storage system,” J Energy Storage, vol. 75, (2024). doi: 10.1016/j.est.2023.109702. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.