Open Access
Issue |
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 20 | |
DOI | https://doi.org/10.1051/e3sconf/202451101017 | |
Published online | 10 April 2024 |
- H. Dong, Y. Wu, J. Zhou, and W. Chen, “Optimal selection for wind power coupled hydrogen energy storage from a risk perspective, considering the participation of multi-stakeholder,” J Clean Prod, vol. 356, (2022). doi: 10.1016/j.jclepro.2022.131853. [Google Scholar]
- K. Kokkinos, E. Nathanail, V. Gerogiannis, K. Moustakas, and V. Karayannis, “Hydrogen storage station location selection in sustainable freight transportation via intuitionistic hesitant decision support system,” Energy, vol. 260, (2022). doi: 10.1016/j.energy.2022.125008. [CrossRef] [Google Scholar]
- Y. Ke, J. Liu, J. Meng, S. Fang, and S. Zhuang, “Comprehensive evaluation for plan selection of urban integrated energy systems: A novel multi-criteria decision-making framework,” Sustain Cities Soc, vol. 81, (2022). doi: 10.1016/j.scs.2022.103837. [Google Scholar]
- M. Uzair and S. Ali Abbas Kazmi, “A multi-criteria decision model to support sustainable building energy management system with intelligent automation,” Energy Build, vol. 301, (2023). doi: 10.1016/j.enbuild.2023.113687. [CrossRef] [Google Scholar]
- J. Gao, H. Men, F. Guo, H. Liu, X. Li, and X. Huang, “A multi-criteria decision-making framework for compressed air energy storage power site selection based on the probabilistic language term sets and regret theory,” J Energy Storage, vol. 37, (2021). doi: 10.1016/j.est.2021.102473. [Google Scholar]
- Y. Wu et al., “Optimal site selection for distributed wind power coupled hydrogen storage project using a geographical information system based multi-criteria decision-making approach: A case in China,” J Clean Prod, vol. 299, (2021). doi: 10.1016/j.jclepro.2021.126905. [Google Scholar]
- “Optimal Energy Storage System Selection: A Decision Support Framework Search | ScienceDirect.com.” Accessed: Jan. 19, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Optimal%20Energy%20Storage%20System%20Selection%3A%20A%20Decision%20Support%20Framework [Google Scholar]
- B. Liu, J. Zhou, Y. Xu, X. Lai, Y. Shi, and M. Li, “An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions,” Renew Energy, vol. 182, pp. 254–273, (2022). doi: 10.1016/j.renene.2021.09.080. [CrossRef] [Google Scholar]
- X. Lan et al., “Parameter optimization decision framework for transient process of a pumped storage hydropower system,” Energy Convers Manag, vol. 286, (2023). doi: 10.1016/j.enconman.2023.117064. [Google Scholar]
- X. Wang, X. Kang, J. An, H. Chen, and D. Yan, “Reinforcement learning approach for optimal control of ice-based thermal energy storage (TES) systems in commercial buildings,” Energy Build, vol. 301, (2023). doi: 10.1016/j.enbuild.2023.113696. [Google Scholar]
- Q. Mao et al., “An investment decision framework for offshore wind-solarseawater pumped storage power project under interval-valued Pythagorean fuzzy environment,” J Energy Storage, vol. 68, (2023). doi: 10.1016/j.est.2023.107845. [Google Scholar]
- X. Yong, W. Chen, Y. Wu, Y. Tao, J. Zhou, and J. He, “A two-stage framework for site selection of underground pumped storage power stations using abandoned coal mines based on multi-criteria decision-making method: An empirical study in China,” Energy Convers Manag, vol. 260, (2022). doi: 10.1016/j.enconman.2022.115608. [CrossRef] [Google Scholar]
- K. Shang, “The probabilistic linguistic decision framework of distributed energy storage system project plan based on the sustainability perspective,” Energy Reports, vol. 8, pp. 15311–15325, (2022). doi: 10.1016/j.egyr.2022.11.056. [CrossRef] [Google Scholar]
- Y. Liang et al., “Sustainable evaluation of energy storage technologies for wind power generation: A multistage decision support framework under multi-granular unbalanced hesitant fuzzy linguistic environment,” Appl Soft Comput, vol. 131, (2022). doi: 10.1016/j.asoc.2022.109768. [CrossRef] [Google Scholar]
- A. Mehmood, L. Zhang, and J. Ren, “A multi-stage optimisation-based decision-making framework for sustainable hybrid energy system in the residential sector,” Sustainable Futures, vol. 6, (2023). doi: 10.1016/j.sftr.2023.100122. [CrossRef] [Google Scholar]
- Y. Yin and J. Liu, “Collaborative decision-making model for capacity allocation of photovoltaics energy storage system under Energy Internet in China,” J Energy Storage, vol. 66, (2023). doi: 10.1016/j.est.2023.107456. [Google Scholar]
- I. Yilmaz, A. Adem, and M. Dağdeviren, “A machine learning-integrated multi-criteria decision-making approach based on consensus for selection of energy storage locations,” J Energy Storage, vol. 69, (2023). doi: 10.1016/j.est.2023.107941. [CrossRef] [Google Scholar]
- F. Guo, J. Gao, H. Men, Y. Fan, and H. Liu, “Large-scale group decisionmaking framework for the site selection of integrated floating photovoltaicpumped storage power system,” J Energy Storage, vol. 43, (2021). doi: 10.1016/j.est.2021.103125. [Google Scholar]
- A. R. Mishra, D. Pamucar, P. Rani, R. Shrivastava, and I. M. Hezam, “Assessing the sustainable energy storage technologies using single-valued neutrosophic decision-making framework with divergence measure,” Expert Syst Appl, vol. 238, (2024). doi: 10.1016/j.eswa.2023.121791. [PubMed] [Google Scholar]
- Y. Liu and J. liang Du, “A multi criteria decision support framework for renewable energy storage technology selection,” J Clean Prod, vol. 277, (2020). doi: 10.1016/j.jclepro.2020.122183. [PubMed] [Google Scholar]
- L. Li, T. Zhou, J. Li, and X. Wang, “A machine learning-based decision support framework for energy storage selection,” Chemical Engineering Research and Design, vol. 181, pp. 412–422, (2022). doi: 10.1016/j.cherd.2022.04.023. [CrossRef] [Google Scholar]
- J. Gao, Y. Wang, N. Huang, L. Wei, and Z. Zhang, “Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework,” Renew Energy, vol. 201, pp. 1139–1162, (2022). doi: 10.1016/j.renene.2022.11.012. [CrossRef] [Google Scholar]
- Y. Tao, X. Luo, J. Zhou, Y. Wu, L. Zhang, and Y. Liu, “Site selection for underground pumped storage plant using abandoned coal mine through a hybrid multi-criteria decision-making framework under the fuzzy environment: A case in China,” J Energy Storage, vol. 56, (2022). doi: 10.1016/j.est.2022.105957. [Google Scholar]
- Z. Ji, W. Li, and D. Niu, “Optimal investment decision of agrivoltaic coupling energy storage project based on distributed linguistic trust and hybrid evaluation method,” Appl Energy, vol. 353, (2024). doi: 10.1016/j.apenergy.2023.122139. [Google Scholar]
- J. Gao, Y. Wang, F. Guo, and J. Chen, “A two-stage decision framework for GIS-based site selection of wind-photovoltaic-hybrid energy storage project using LSGDM method,” Renew Energy, p. 119912, (2023). doi: 10.1016/j.renene.2023.119912. [Google Scholar]
- Y. Wang, J. Gao, F. Guo, and Q. Meng, “Optimal siting of shared energy storage projects from a sustainable development perspective: A two-stage framework,” J Energy Storage, vol. 79, p. 110213, (2024). doi: 10.1016/j.est.2023.110213. [CrossRef] [Google Scholar]
- Md.Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, (2022). [Google Scholar]
- M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, (2022). [Google Scholar]
- S. Kumar, A. Chopra, and M. Z. U. Haq, “Experimental Investigation on Marble Dust, Rice Husk Ash, and Fly Ash Based Geopolymer Brick”. [Google Scholar]
- V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, (2023). [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, (2023). [Google Scholar]
- C. Mohan, N. Kumari, J. Robinson, “Sustainable and environmental friendly energy materials,” Materials Today: Proceedings, vol. 69, pp 494–498, (2022). doi : 10.1016/j.matpr.2022.09.187 [Google Scholar]
- C. Mohan, N. Kumari, R. Jindal, R. Gautam, “Application of Efficient Naturally Occurring Clay Mineral for Fuchsin Basic Dye Removal”, Advances in Functional and Smart Materials, Lecture Notes in Mechanical Engineering, pp 381–390, Springer, Germany, (2022). doi: 10.1007/978981-19-4147-4_39 [Google Scholar]
- D. Aghimien et al., “Barriers to Digital Technology Deployment in Value Management Practice,” Buildings, vol. 12, no. 6, (2022). doi: 10.3390/BUILDINGS12060731. [CrossRef] [Google Scholar]
- M. Kumar et al., “Coordination behavior of Schiff base copper complexes and structural characterization,” MRS Adv, vol. 7, no. 31, pp. 939–943, (2022). doi: 10.1557/S43580-022-00348-6. [CrossRef] [Google Scholar]
- S. Dixit and A. Stefańska, “Bio-logic, a review on the biomimetic application in architectural and structural design,” Ain Shams Engineering Journal, (2022). doi: 10.1016/J.ASEJ.2022.101822. [Google Scholar]
- H. Bindu Katikala, T. Pavan Kumar, B. Manideep Reddy, B. V.V. Pavan Kumar, G. Ramana Murthy, and S. Dixit, “Design of half adder using integrated leakage power reduction techniques,” Mater Today Proc, vol. 69, pp. 576–581, (2022). doi: 10.1016/J.MATPR.2022.09.425. [CrossRef] [Google Scholar]
- S. K. Samal et al., “3D-Printed Satellite Brackets: Materials, Manufacturing and Applications,” Crystals (Basel), vol. 12, no. 8, (2022). doi: 10.3390/CRYST12081148. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.