Open Access
Issue
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
Article Number 01039
Number of page(s) 18
DOI https://doi.org/10.1051/e3sconf/202451101039
Published online 10 April 2024
  1. M. Mohinur Rahaman and M. Azharuddin, “Wireless sensor networks in agriculture through machine learning: A survey,” Comput Electron Agric, vol. 197, (2022). doi: 10.1016/j.compag.2022.106928. [CrossRef] [Google Scholar]
  2. “Machine Learning for Anomaly Detection in Electric Transportation Networks Search | ScienceDirect.com.” Accessed: Jan. 19, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Machine%20Learning%20for%20Anomaly%20Detection%20in%20Electric%20Transportation%20Networks [Google Scholar]
  3. A. Arsalan et al., “Cyber Attack Detection and Classification for Integrated On-board Electric Vehicle Chargers subject to Stochastic Charging Coordination,” Transportation Research Procedia, vol. 70, pp. 44–51, (2023). doi: 10.1016/j.trpro.2023.10.007. [CrossRef] [Google Scholar]
  4. X. Xia et al., “GAN-based anomaly detection: A review,” Neurocomputing, vol. 493, pp. 497–535, (2022). doi: 10.1016/j.neucom.2021.12.093. [CrossRef] [Google Scholar]
  5. B. A. Alkhaleel, “Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review,” International Journal of Critical Infrastructure Protection, vol. 44, (2024). doi: 10.1016/j.ijcip.2023.100646. [CrossRef] [Google Scholar]
  6. S. M. Nagarajan, G. G. Devarajan, R. T.V., A. J. M., A. K. Bashir, and Y. D. Al-Otaibi, “Adversarial Deep Learning based Dampster–Shafer data fusion model for intelligent transportation system,” Information Fusion, vol. 102, (2024). doi: 10.1016/j.inffus.2023.102050. [CrossRef] [Google Scholar]
  7. L. Klass, A. Kabza, F. Sehnke, K. Strecker, and M. Hölzle, “Lifelong performance monitoring of PEM fuel cells using machine learning models,” J Power Sources, vol. 580, (2023). doi: 10.1016/j.jpowsour.2023.233308. [CrossRef] [Google Scholar]
  8. J. Zhao, X. Feng, J. Wang, Y. Lian, M. Ouyang, and A. F. Burke, “Battery fault diagnosis and failure prognosis for electric vehicles using spatiotemporal transformer networks,” Appl Energy, vol. 352, (2023). doi: 10.1016/j.apenergy.2023.121949. [Google Scholar]
  9. A. Si-Ahmed, M. A. Al-Garadi, and N. Boustia, “Survey of Machine Learning based intrusion detection methods for Internet of Medical Things,” Appl Soft Comput, vol. 140, (2023). doi: 10.1016/j.asoc.2023.110227. [CrossRef] [Google Scholar]
  10. S. Kanarachos, S. R. G. Christopoulos, A. Chroneos, and M. E. Fitzpatrick, “Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform,” Expert Syst Appl, vol. 85, pp. 292–304, (2017). doi: 10.1016/j.eswa.2017.04.028. [CrossRef] [Google Scholar]
  11. A. Et-taleby, Y. Chaibi, A. Allouhi, M. Boussetta, and M. Benslimane, “A combined convolutional neural network model and support vector machine technique for fault detection and classification based on electroluminescence images of photovoltaic modules,” Sustainable Energy, Grids and Networks, vol. 32, (2022). doi: 10.1016/j.segan.2022.100946. [CrossRef] [Google Scholar]
  12. E. Kristianto, P. C. Lin, and R. H. Hwang, “Sustainable and lightweight domain-based intrusion detection system for in-vehicle network,” Sustainable Computing: Informatics and Systems, vol. 41, (2024). doi: 10.1016/j.suscom.2023.100936. [CrossRef] [Google Scholar]
  13. J. Zhao et al., “Battery prognostics and health management from a machine learning perspective,” J Power Sources, vol. 581, (2023). doi: 10.1016/j.jpowsour.2023.233474. [CrossRef] [Google Scholar]
  14. H. T. Truong et al., “Light-weight federated learning-based anomaly detection for time-series data in industrial control systems,” Comput Ind, vol. 140, (2022). doi: 10.1016/j.compind.2022.103692. [CrossRef] [Google Scholar]
  15. H. Kheddar, Y. Himeur, and A. I. Awad, “Deep transfer learning for intrusion detection in industrial control networks: A comprehensive review,” Journal of Network and Computer Applications, vol. 220, (2023). doi: 10.1016/j.jnca.2023.103760. [CrossRef] [Google Scholar]
  16. M. Y. Arafat, M. J. Hossain, and M. M. Alam, “Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects,” Renewable and Sustainable Energy Reviews, vol. 190, (2024). doi: 10.1016/j.rser.2023.114088. [CrossRef] [Google Scholar]
  17. H. Bangui and B. Buhnova, “Recent advances in machine-learning driven intrusion detection in transportation: Survey,” Procedia Comput Sci, vol. 184, pp. 877–886, (2021). doi: 10.1016/j.procs.2021.04.014. [CrossRef] [Google Scholar]
  18. Z. Nozarijouybari and H. K. Fathy, “Li-S Battery Outlier Detection and Voltage Prediction using Machine Learning,” IFAC-PapersOnLine, vol. 56, no. 3, pp. 349–354, (2023). doi: 10.1016/j.ifacol.2023.12.049. [CrossRef] [Google Scholar]
  19. Z. S. Warraich and W. G. Morsi, “Early detection of cyber–physical attacks on fast charging stations using machine learning considering vehicle-to-grid operation in microgrids,” Sustainable Energy, Grids and Networks, vol. 34, (2023). doi: 10.1016/j.segan.2023.101027. [CrossRef] [Google Scholar]
  20. G. Li and J. J. Jung, “Deep learning for anomaly detection in multivariate time series: Approaches, applications, and challenges,” Information Fusion, vol. 91, pp. 93–102, (2023). doi: 10.1016/j.inffus.2022.10.008. [CrossRef] [Google Scholar]
  21. M. C. Camur, S. K. Ravi, and S. Saleh, “Enhancing supply chain resilience: A machine learning approach for predicting product availability dates under disruption,” Expert Syst Appl, p. 123226, (2024). doi: 10.1016/J.ESWA.2024.123226. [CrossRef] [Google Scholar]
  22. M. A. Umer, K. N. Junejo, M. T. Jilani, and A. P. Mathur, “Machine learning for intrusion detection in industrial control systems: Applications, challenges, and recommendations,” International Journal of Critical Infrastructure Protection, vol. 38, (2022). doi: 10.1016/j.ijcip.2022.100516. [Google Scholar]
  23. S. Ali, Q. Li, and A. Yousafzai, “Blockchain and federated learning-based intrusion detection approaches for edge-enabled industrial IoT networks: a survey,” Ad Hoc Networks, vol. 152, (2024). doi: 10.1016/j.adhoc.2023.103320. [Google Scholar]
  24. İ. Yazici, I. Shayea, and J. Din, “A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems,” Engineering Science and Technology, an International Journal, vol. 44, (2023). doi: 10.1016/j.jestch.2023.101455. [CrossRef] [Google Scholar]
  25. H. Alqahtani and G. Kumar, “Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems,” Eng Appl Artif Intell, vol. 129, (2024). doi: 10.1016/j.engappai.2023.107667. [CrossRef] [Google Scholar]
  26. Md.Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, (2022). [Google Scholar]
  27. A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, (2022). [Google Scholar]
  28. P. B. Joshi, N. C. Durve1 and C. Mohan, “Full blown green metrics‖, Elsevier Publishing, pp 109–129, (2024). doi : 10.1016/B978-0-443-189593.00013-6 [Google Scholar]
  29. M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, (2022). [Google Scholar]
  30. S. Kumar, A. Chopra, and M. Z. U. Haq, “Experimental Investigation on Marble Dust, Rice Husk Ash, and Fly Ash Based Geopolymer Brick”. [Google Scholar]
  31. V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, (2023). [Google Scholar]
  32. C. Mohan, N. Kumari, Sushma, A. Yadav, V. K. Garg, “Introduction to environmental and green chemistry”, Elsevier Publishing, pp 1–22, (2024). doi : 10.1016/B978-0-443-18959-3.00005-7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.