Open Access
Issue |
E3S Web Conf.
Volume 511, 2024
International Conference on “Advanced Materials for Green Chemistry and Sustainable Environment” (AMGSE-2024)
|
|
---|---|---|
Article Number | 01040 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/e3sconf/202451101040 | |
Published online | 10 April 2024 |
- Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
- L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [PubMed] [Google Scholar]
- Y. Kuppusamy et al., “Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/MA15103443. [Google Scholar]
- K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
- K. Kumar et al., “Comparative Analysis of Waste Materials for Their Potential Utilization in Green Concrete Applications,” Materials, vol. 15, no. 12, Jun. 2022, doi: 10.3390/MA15124180. [Google Scholar]
- M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
- K. Kumar et al., “Revolutionising Heat Treatment: Novel Strategies for Augmented Performance and Sustainability,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01200. [Google Scholar]
- K. Kumar et al., “Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01199. [Google Scholar]
- C. Mohan, N. Kumari, Sushma, A. Yadav, V. K. Garg, “Introduction to environmental and green chemistry”, Elsevier Publishing, pp 1–22, (2024). doi : 10.1016/B978-0-443-18959-3.00005-7 [Google Scholar]
- P. B. Joshi, N. C. Durve1 and C. Mohan, “Full blown green metrics”, Elsevier Publishing, pp 109–129, (2024). doi : 10.1016/B978-0-443-189593.00013-6 [Google Scholar]
- W. Guo et al., “A novel liquid natural gas combined cycle system integrated with liquid nitrogen energy storage and carbon capture for replacing coalfired power plants: System modelling and 3E analysis,” Energy Convers Manag, vol. 298, Dec. 2023, doi: 10.1016/j.enconman.2023.117755. [Google Scholar]
- N. Vukajlović, D. Milićević, B. Dumnić, and B. Popadić, “Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage,” J Energy Storage, vol. 31, Oct. 2020, doi: 10.1016/j.est.2020.101603. [Google Scholar]
- “Life Cycle Analysis of Energy Storage Technologies: A Comparative Study Search | ScienceDirect.com.” Accessed: Jan. 19, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Life%20Cycle%20Analysis%20of%20Energy%20Storage%20Technologies%3A%20A%20Comparative%20Study [Google Scholar]
- T. Fan, W. Liang, W. Guo, T. Feng, and W. Li, “Life cycle assessment of electric vehicles’ lithium-ion batteries reused for energy storage,” J Energy Storage, vol. 71, Nov. 2023, doi: 10.1016/j.est.2023.108126. [Google Scholar]
- B. Ali, “Comparative sustainability assessment of energy storage technologies in Qatar,” J Energy Storage, vol. 67, Sep. 2023, doi: 10.1016/j.est.2023.107534. [Google Scholar]
- T. Hallste Pérez, J. Rodríguez-Chueca, and J. Pérez Rodríguez, “Inclusion of key social indices for a comparative assessment of the sustainability of the life cycle of current and future electricity generation in Spain: A proposed methodology,” Science of the Total Environment, vol. 899, Nov. 2023, doi: 10.1016/j.scitotenv.2023.165541. [Google Scholar]
- H. Tan, N. Wen, and B. Shao, “Comparative study on the globally optimal performance of cryogenic energy storage systems with different working media,” Energy Storage and Saving, vol. 2, no. 2, pp. 421–434, Jun. 2023, doi: 10.1016/j.enss.2023.02.005. [CrossRef] [Google Scholar]
- A. Carro, R. Chacartegui, C. Ortiz, and J. A. Becerra, “Indirect power cycles integration in concentrated solar power plants with thermochemical energy storage based on calcium hydroxide technology,” J Clean Prod, vol. 421, Oct. 2023, doi: 10.1016/j.jclepro.2023.138417. [CrossRef] [Google Scholar]
- D. Landi, M. Marconi, and G. Pietroni, “Comparative life cycle assessment of two different battery technologies: Lithium iron phosphate and sodiumsulfur,” Procedia CIRP, vol. 105, pp. 482–488, 2022, doi: 10.1016/j.procir.2022.02.080. [CrossRef] [Google Scholar]
- B. Nilges, C. Burghardt, K. Roh, C. Reinert, and N. von der Aßen, “Comparative life cycle assessment of industrial demand-side management via operational optimization,” Comput Chem Eng, vol. 177, Sep. 2023, doi: 10.1016/j.compchemeng.2023.108323. [CrossRef] [Google Scholar]
- W. Tian and H. Xi, “Comparative analysis and optimization of pumped thermal energy storage systems based on different power cycles,” Energy Convers Manag, vol. 259, May 2022, doi: 10.1016/j.enconman.2022.115581. [CrossRef] [Google Scholar]
- M. Mączka, M. Guzik, M. Mosiałek, M. Wojnarowska, P. Pasierb, and T. Nitkiewicz, “Life cycle assessment of experimental Al-ion batteries for energy storage applications,” Science of the Total Environment, vol. 912, Feb. 2024, doi: 10.1016/j.scitotenv.2023.169258. [CrossRef] [Google Scholar]
- A. A. Adeyemo, E. Alves, F. Marra, D. Brandao, and E. Tedeschi, “Suitability assessment of high-power energy storage technologies for offshore oil and gas platforms: A life cycle cost perspective,” J Energy Storage, vol. 61, May 2023, doi: 10.1016/j.est.2023.106643. [CrossRef] [Google Scholar]
- A. Paini, S. Romei, R. Stefanini, and G. Vignali, “Comparative life cycle assessment of ohmic and conventional heating for fruit and vegetable products: The role of the mix of energy sources,” J Food Eng, vol. 350, Aug. 2023, doi: 10.1016/j.jfoodeng.2023.111489. [CrossRef] [Google Scholar]
- P. Wang et al., “Comparative analysis of system performance of thermally integrated pumped thermal energy storage systems based on organic flash cycle and organic Rankine cycle,” Energy Convers Manag, vol. 273, Dec. 2022, doi: 10.1016/j.enconman.2022.116416. [CrossRef] [Google Scholar]
- F. Rostami, Z. Kis, R. Koppelaar, L. Jiménez, and C. Pozo, “Comparative sustainability study of energy storage technologies using data envelopment analysis,” Energy Storage Mater, vol. 48, pp. 412–438, Jun. 2022, doi: 10.1016/j.ensm.2022.03.026. [CrossRef] [Google Scholar]
- V. Lucaferri et al., “Modeling and optimization method for Battery Energy Storage Systems operating at variable C-rate: A comparative study of Lithium technologies,” J Energy Storage, vol. 73, Dec. 2023, doi: 10.1016/j.est.2023.109232. [CrossRef] [Google Scholar]
- R. Yudhistira, D. Khatiwada, and F. Sanchez, “A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage,” J Clean Prod, vol. 358, Jul. 2022, doi: 10.1016/j.jclepro.2022.131999. [CrossRef] [Google Scholar]
- N. Gerloff, “Comparative Life-Cycle-Assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production,” J Energy Storage, vol. 43, Nov. 2021, doi: 10.1016/j.est.2021.102759. [CrossRef] [Google Scholar]
- B. R. David, S. Spencer, J. Miller, S. Almahmoud, and H. Jouhara, “Comparative environmental life cycle assessment of conventional energy storage system and innovative thermal energy storage system,” International Journal of Thermofluids, vol. 12, Nov. 2021, doi: 10.1016/j.ijft.2021.100116. [CrossRef] [Google Scholar]
- M. Kumar, C. Mohan, S. Kumar, K. Epifantsev, V. Singh et al., “Coordination behavior of Schiff base copper complexes and structural characterization” MRS Advances, vol. 7, pp 939–943, (2022). doi : 10.1557/s43580-022-00348-6 [CrossRef] [Google Scholar]
- C. Mohan, N. Kumari, J. Robinson, “Sustainable and environmental friendly energy materials” Materials Today: Proceedings, vol. 69, pp 494498, (2022). doi : 10.1016/j.matpr.2022.09.187 [Google Scholar]
- L. Li et al., “Comparative techno-economic analysis of large-scale renewable energy storage technologies,” Energy and AI, vol. 14, Oct. 2023, doi: 10.1016/j.egyai.2023.100282. [Google Scholar]
- X. Han et al., “Comparative life cycle greenhouse gas emissions assessment of battery energy storage technologies for grid applications,” J Clean Prod, vol. 392, Mar. 2023, doi: 10.1016/j.jclepro.2023.136251. [Google Scholar]
- H. Tang and S. Wang, “Life-cycle economic analysis of thermal energy storage, new and second-life batteries in buildings for providing multiple flexibility services in electricity markets,” Energy, vol. 264, Feb. 2023, doi: 10.1016/j.energy.2022.126270. [CrossRef] [Google Scholar]
- S. T. Le, T. N. Nguyen, D.-K. Bui, B. Teodosio, and T. D. Ngo, “Comparative life cycle assessment of renewable energy storage systems for net-zero buildings with varying self-sufficient ratios,” Energy, p. 130041, Mar. 2023, doi: 10.1016/j.energy.2023.130041. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.