Open Access
Issue
E3S Web Conf.
Volume 512, 2024
2024 International Conference on Urban Construction and Transportation (UCT 2024)
Article Number 03005
Number of page(s) 7
Section Traffic Construction Engineering and Transportation Optimization
DOI https://doi.org/10.1051/e3sconf/202451203005
Published online 10 April 2024
  1. Jha, M. K., & Maji, A. (2007, April). A multiobjective genetic algorithm for optimizing highway alignments. In 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (pp. 261–266). IEEE. [Google Scholar]
  2. Pu, H., Song, T., Schonfeld, P., Li, W., Zhang, H., Hu, J., … & Wang, J. (2019). Mountain railway alignment optimization using stepwise & hybrid particle swarm optimization incorporating genetic operators. Applied Soft Computing, 78, 41–57. [CrossRef] [Google Scholar]
  3. Li, W., Pu, H., Zhao, H., & Liu, W. (2013). Approach for Optimizing 3D Highway Alignments Based on Two-stage Dynamic Programming. J. Softw., 8(11), 2967–2973. [Google Scholar]
  4. Hare, W., Lucet, Y., & Rahman, F. (2015). A mixedinteger linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction. European journal of operational research, 241(3), 631–641. [CrossRef] [Google Scholar]
  5. Zhang, Y. (2023, January). Multi-objective Cost Optimization of Highway Engineering Based on Ant Colony Algorithm. In International Conference on Innovative Computing (pp. 301–307). [Google Scholar]
  6. Shafahi, Y., & Bagherian, M. (2013). A customized particle swarm method to solve highway alignment optimization problem. Computer‐Aided Civil and Infrastructure Engineering, 28(1), 52–67. [CrossRef] [Google Scholar]
  7. Basak, A. (2022). The Study of Geometry of the Selected Transition Curves in the Design of Circular Roads. Advances in Science and Technology. Research Journal, 16(4). [Google Scholar]
  8. Wang, X., Wang, T., Tarko, A., & Tremont, P. J. (2015). The influence of combined alignments on lateral acceleration on mountainous freeways: A driving simulator study. Accident Analysis & Prevention, 76, 110–117. [CrossRef] [Google Scholar]
  9. Sushma, M. B., Roy, S., & Maji, A. (2022). Exploring and exploiting ant colony optimization algorithm for vertical highway alignment development. Computer‐ Aided Civil and Infrastructure Engineering, 37(12), 1582–1601. [CrossRef] [Google Scholar]
  10. Pu, Z., Li, Z., Ke, R., Hua, X., & Wang, Y. (2020). Evaluating the nonlinear correlation between vertical curve features and crash frequency on highways using random forests. Journal of transportation engineering, Part A: Systems, 146(10). [Google Scholar]
  11. Aruga, K., Sessions, J., Akay, A., & Chung, W. (2005). Simultaneous optimization of horizontal and vertical alignments of forest roads using Tabu Search. International Journal of Forest Engineering, 16(2), 137–151. [CrossRef] [Google Scholar]
  12. Amiridis, K., & Psarianos, B. (2015). Three dimensional road design by applying differential geometry and conventional design approach criteria. TRB, Washington DC, 23. [Google Scholar]
  13. Maji, A., & Jha, M. K. (2009). Multi‐objective highway alignment optimization using a genetic algorithm. Journal of Advanced Transportation, 43(4), 481–504. [CrossRef] [Google Scholar]
  14. Zhang, Q., An, Z., Huangfu, Z., & Li, Q. (2022). A Review on Roller Compaction Quality Control and Assurance Methods for Earthwork in Five Application Scenarios. Materials, 15(7). [Google Scholar]
  15. Qian, F. (2022). Multi Objective Optimization Based on Improved Particle Swarm Optimization and its Application. University of Science and Technology Beijing. [Google Scholar]
  16. Kabongo Booto, G., Run Vignisdottir, H., Marinelli, G., Brattebø, H., & Bohne, R. A. (2020). Optimizing road gradients regarding earthwork cost, fuel cost, and tank-to-wheel emissions. Journal of Transportation Engineering, Part a: Systems, 146(3). [Google Scholar]
  17. Transportation, A. (2010). Standard specifications for highway construction. Edmonton, Alberta: Alberta Transportation. [Google Scholar]
  18. Rachmawati, L., & Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.