Open Access
Issue
E3S Web Conf.
Volume 514, 2024
2024 10th International Conference on Environment and Renewable Energy (ICERE 2024)
Article Number 03003
Number of page(s) 14
Section Renewable Energy Technology and Energy Management
DOI https://doi.org/10.1051/e3sconf/202451403003
Published online 11 April 2024
  1. IEA. Renewables 2021, IEA, Paris 2021. [Google Scholar]
  2. Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A. Offshore macroalgae biomass for bioenergy production: Environmental aspects, technological achievements and challenges. Renewable and Sustainable Energy Reviews 2017;75:35–45. https://doi.org/https://doi.org/10.1016/j.rser.2016.10.046. [CrossRef] [Google Scholar]
  3. Skjermo J, Aasen IM, Arff J, Broch OJ, Carvajal AK, Christie H, et al. A new Norwegian bioeconomy based on cultivation and processing of seaweeds: Opportunities and R&D needs, 2014. [Google Scholar]
  4. Recalde M, Amladi A, Venkataraman V, Woudstra T, Aravind PV. Thermodynamic analysis of supercritical water gasification combined with a reversible solid oxide cell. Energy Convers Manag 2022;270:116208. https://doi.org/10.1016/j.enconman.2022.116208. [CrossRef] [Google Scholar]
  5. MacrìD, Catizzone E, Molino A, Migliori M. Supercritical water gasification of biomass and agro-food residues: Energy assessment from modelling approach. Renew Energy 2020;150:624–36. https://doi.org/10.1016/j.renene.2019.12.147. [CrossRef] [Google Scholar]
  6. Yan Q, Guo L, Lu Y. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers Manag 2006;47:1515–28. https://doi.org/10.1016/j.enconman.2005.08.004. [CrossRef] [Google Scholar]
  7. Boukis N, Stoll IK. Gasification of biomass in supercritical water, challenges for the process design—lessons learned from the operation experience of the first dedicated pilot plant. Processes 2021;9:1–17. https://doi.org/10.3390/pr9030455. [CrossRef] [Google Scholar]
  8. Yanik J, Ebale S, Kruse A, Saglam M, Yüksel M. Biomass gasification in supercritical water: II. Effect of catalyst. Int J Hydrogen Energy 2008;33:4520–6. https://doi.org/10.1016/j.ijhydene.2008.06.024. [CrossRef] [Google Scholar]
  9. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ Sci 2008;1:32–65. [CrossRef] [Google Scholar]
  10. Olivier J, Vaxelaire J. The Prediction of Filter Belt Press Dewatering Efficiency for Activated Sludge By Experimentation on Filtration Compression Cells. Environ Technol 2005;25:1423–30. https://doi.org/10.1080/09593332508618474. [Google Scholar]
  11. Nallathambi Gunaseelan V. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997;13:83–114. https://doi.org/10.1016/S0961-9534(97)00020-2. [CrossRef] [Google Scholar]
  12. Kunatsa T, Xia X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour Technol 2021;344:126311. https://doi.org/10.1016/j.biortech.2021.126311. [Google Scholar]
  13. Matsumura Y. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan. Energy Conversion and Management - ENERG CONV MANAGE 2002;43. https://doi.org/10.1016/S0196-8904(02)00016-X. [Google Scholar]
  14. Gasafi E, Reinecke M-Y, Kruse A, Schebek L. Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenergy 2008;32:1085–96. https://doi.org/10.1016/j.biombioe.2008.02.021. [CrossRef] [Google Scholar]
  15. Peters MS, TKD, & WRE. Plant design and economics for chemical engineers (5th ed.). 5th ed. 2003. [Google Scholar]
  16. S Kempegowda R, Skreiberg Ø, Tran K-Q. Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems. Journal of Renewable and Sustainable Energy 2012;4. https://doi.org/10.1063/1.4737920. [Google Scholar]
  17. Del Alamo G, Kempegowda RS, Skreiberg Ø, Khalil R. Decentralized Production of Fischer–Tropsch Biocrude via Coprocessing of Woody Biomass and Wet Organic Waste in Entrained Flow Gasification: Techno-Economic Analysis. Energy & Fuels 2017;31:6089–108. https://doi.org/10.1021/acs.energyfuels.7b00273. [CrossRef] [Google Scholar]
  18. Kempegowda RS, Skreiberg Ø, Tran K-Q, Selvam PVP. Techno-economic Assessment of Thermal Co-pretreatment and Co-digestion of Food Wastes and Sewage Sludge for Heat, Power and Biochar Production. Energy Procedia 2017;105:1737–42. https://doi.org/10.1016/j.egypro.2017.03.498. [CrossRef] [Google Scholar]
  19. Kempegowda RS, del Alamo Serrano G, Güell BM, Tran K -Q. Techno-economic Analysis of Biomass to Fischer-tropsch Diesel Production with and without CCS Under Norwegian Conditions. Energy Procedia 2014;61:1248–51. https://doi.org/10.1016/j.egypro.2014.11.1070. [CrossRef] [Google Scholar]
  20. Kempegowda RS, Tran K-Q, Skreiberg Ø. Techno-economic assessment of integrated hydrochar and high-grade activated carbon production for electricity generation and storage. Energy Procedia 2017;120:341–8. https://doi.org/10.1016/j.egypro.2017.07.223. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.