Open Access
Issue
E3S Web Conf.
Volume 514, 2024
2024 10th International Conference on Environment and Renewable Energy (ICERE 2024)
Article Number 04004
Number of page(s) 10
Section Green Building Materials and Indoor Air Quality
DOI https://doi.org/10.1051/e3sconf/202451404004
Published online 11 April 2024
  1. Morawska L., et al., Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment international, 2017. 108: p. 75–83. [CrossRef] [PubMed] [Google Scholar]
  2. Slezakova K., E. de Oliveira Fernandes, and M. do Carmo Pereira, Assessment of ultrafine particles in primary schools: Emphasis on different indoor microenvironments. Environmental pollution, 2019. 246: p. 885–895. [Google Scholar]
  3. Ivanov, N.G., et al., Numerical simulation of pollutant dispersion in a test ventilated room. Journal of Physics: Conference Series, 2020. 1683(2): p. 022075. [CrossRef] [Google Scholar]
  4. Belanger K., et al., Symptoms of wheeze and persistent cough in the first year of life: associations with indoor allergens, air contaminants, and maternal history of asthma. American journal of epidemiology, 2003. 158(3): p. 195–202. [Google Scholar]
  5. Zhang X., et al., Environmental perceptions, mental performance, and physiological responses of people with respiratory allergies exposed to reduced Indoor Air Quality. Indoor air, 2021. 31(5): p. 1458–1472. [CrossRef] [PubMed] [Google Scholar]
  6. Franklin, B.A., R. Brook, and C.A. PopeIII, Air pollution and cardiovascular disease. Current problems in cardiology, 2015. 40(5): p. 207–238. [CrossRef] [Google Scholar]
  7. Cometto-Muñiz, J.E. and W.S. Cain, Part iii. Assessing irritation: Sensory irritation: Relation to indoor air pollution. Annals of the New York Academy of Sciences, 1992. 641(1 Sources of In): p. 137–151. [CrossRef] [PubMed] [Google Scholar]
  8. Melikov, A. and J. Kaczmarczyk, Measurement and prediction of indoor air quality using a breathing thermal manikin. Indoor air, 2007. 17(1): p. 50–59. [CrossRef] [PubMed] [Google Scholar]
  9. Georgescu, M.-R., et al. Numerical Study of Personalized Ventilation Impact on Occupant Comfort in Enclosed Spaces. in 2021 10th International Conference on ENERGY and ENVIRONMENT (CIEM). 2021. IEEE. [Google Scholar]
  10. Georgescu, M.R., et al., Personalized ventilation solutions for reducing CO2 levels in the crew quarters of the International Space Station. Building and Environment, 2021. 204: p. 108150. [CrossRef] [Google Scholar]
  11. Kaczmarczyk J., et al., Human response to five designs of personalized ventilation. Hvac&R Research, 2006. 12(2): p. 367–384. [CrossRef] [Google Scholar]
  12. Melikov, A.K., R. Cermak, and M. Majer, Personalized ventilation: evaluation of different air terminal devices. Energy and Buildings, 2002. 34(8): p. 829–836. [CrossRef] [Google Scholar]
  13. Cermak, R. and A.K. Melikov, Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation. Hvac&R Research, 2007. 13(1): p. 23–38. [CrossRef] [Google Scholar]
  14. Cermak R., et al., Performance of personalized ventilation in conjunction with mixing and displacement ventilation. Hvac&R Research, 2006. 12(2): p. 295–311. [CrossRef] [Google Scholar]
  15. Taheri M., et al. A performance assessment of an office space with displacement, personal, and natural ventilation systems. in Building Simulation. 2016. Springer. [Google Scholar]
  16. Zhai, Z. and I.D. Metzger, Insights on critical parameters and conditions for personalized ventilation. Sustainable Cities and Society, 2019. 48: p. 101584. [CrossRef] [Google Scholar]
  17. Florin Bode, Fluid dynamics analysis for innovative personalized ventilation diffusers for automotive and building applications. 2011-2013, UEFISCDI: Technical University of Civil Engineering Bucharest, Romania. [Google Scholar]
  18. Florin Bode, et al., Innovative strategies of HVAC systems for high indoor environmental quality in vehicles 2014-2016, UEFISCDI: Technical University of Cluj-Napoca. [Google Scholar]
  19. Bode F., Innovative high induction air diffusers for improved indoor environmental quality in vehicles 2022-2024, UEFISCDI. [Google Scholar]
  20. Bode, F.I. and I. Nastase Numerical Investigation of Very Low Reynolds Cross Orifice Jet for Personalized Ventilation Applications in Aircraft Cabins. International Journal of Environmental Research and Public Health, 2022. 20, DOI: 10.3390/ijerph20010740. [CrossRef] [PubMed] [Google Scholar]
  21. Florin Bode, et al., A Numerical Analysis of the Air Distribution System for the Ventilation of the Crew Quarters on board of the International Space Station. E3S Web Conf., 2018. 32: p. 01006. [CrossRef] [EDP Sciences] [Google Scholar]
  22. Angel Dogeanu, et al., Conception of a simplified seated thermal manikin for CFD validation purposes. Romanian Journal of Civil Engineering, 2014. 5(1). [Google Scholar]
  23. Croitoru C., et al., Assessment of virtual thermal manikins for thermal comfort numerical studies. Verification and validation. E3S Web Conf., 2019. 111: p. 02018. [CrossRef] [EDP Sciences] [Google Scholar]
  24. Zasimova, M.A., E.D. Stepasheva, and N.G. Ivanov, Effect of thermal manikin shape on thermal comfort parameters prediction uncertainties: a numerical study. IOP Conference Series: Earth and Environmental Science, 2023. 1185(1): p. 012040. [CrossRef] [Google Scholar]
  25. Zasimova, M.A., et al., Evaluation of CFD-predicted thermal comfort uncertainties based on a seated thermal manikin test case. IOP Conference Series: Earth and Environmental Science, 2023. 1185(1): p. 012041. [CrossRef] [Google Scholar]
  26. Ansys, Ansys Fluent theory guide. [Google Scholar]
  27. Fanger, P.O., et al., Air turbulence and sensation of draught. Energy and Buildings, 1988. 12(1): p. 21–39. [Google Scholar]
  28. Fanger, P.O., The new comfort equation for indoor air quality. Ashrae Journal, 1989. 31(10): p. 33–38. [Google Scholar]
  29. Fanger, P.O., ed. Thermal Comfort-Analysis and Applications in Environmental Engineering. ed. C.D.T. Press. 1970. [Google Scholar]
  30. ASHRAE, ‘‘Thermal environmental conditions for human occupancy,’’ ANSI/ASHRAE Standard 55-2004, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA. 2004. [Google Scholar]
  31. Ivanov, M. and S. Mijorski, CFD Modelling of Flow Interaction in the Breathing Zone of a Virtual Thermal Manikin. Energy Procedia, 2017. 112: p. 240–251. [CrossRef] [Google Scholar]
  32. Ivanov M., Exhaled air speed measurements of respiratory air flow, generated by ten different human subjects, under uncontrolled conditions. E3S Web Conf., 2019. 111: p. 02074. [CrossRef] [EDP Sciences] [Google Scholar]
  33. Ivanov, M. and S. Mijorski, Assessment of Transient CFD Techniques for Virtual Thermal Manikins’ Breathing Simulations. Environmental Processes, 2019. 6(1): p. 241–251. [CrossRef] [Google Scholar]
  34. Kavgic M., et al., Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre. Energy and Buildings, 2008. 40(7): p. 1334–1343. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.