Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 01005
Number of page(s) 5
Section Energy Sustainability
DOI https://doi.org/10.1051/e3sconf/202451601005
Published online 15 April 2024
  1. K. J. F. Meier, A. Jaeschke, J. Rethemeyer, C. M. Chiessi, A. L. S. Albuquerque, V. Wall, O. Friedrich and A. Bahr, Coupled oceanic and atmospheric controls of deglacial Southeastern South America precipitation and Western South Atlantic productivity. Front. Mar. Sci. 9, 1–20 (2022) [Google Scholar]
  2. J. L. Holechek, H. M. E. Geli, M. N. Sawalhah and R. Valdez, A global assessment: can renewable energy replace fossil fuels by 2050?. Sustain. 14, 1–22 (2022) [CrossRef] [Google Scholar]
  3. M. C. R. D. Souza, B. R. Freitas, A. P. D. S. Figueiredo, H. J. Venial, P. G. Corradini and M. D. O. Souza, A Influência dos compostos orgânicos voláteis nas mudanças climáticas: uma breve revisão. Rev. Virtual Química. 15, 227–240 (2022) [Google Scholar]
  4. S. R. Chia, S. Nomanbhay, M. Y. Ong, A. H. Shamsuddin, K. W. Chew and P. L. Show, Renewable diesel as fossil fuel substitution in Malaysia: A review. Fuel. 314, 123137 (2022) [CrossRef] [Google Scholar]
  5. T. Karthik, N. R. Banapurmath, D. N. Basavarajappa, S. V. Ganachari, P. S. Kulkarni and P. A. Harari, Effect of injection timing on the performance of dual fuel engine fueled with algae nano-biodiesel blends and biogas. Mater. Today Proc. 59, 289–296 (2022) [CrossRef] [Google Scholar]
  6. F. He, Y. Liu, J. Pan, X. Ye and P. Jiao, Advanced ocean wave energy harvesting: current progress and future trends. J. Zhejiang Univ. Sci. A. 24, 91–108 (2023) [CrossRef] [Google Scholar]
  7. S. Elbarbary, M. A. Zaher, H. Saibi, A. R. Fowler and K. Saibi, Geothermal renewable energy prospects of the African continent using GIS. Geotherm. Energy. 10, 1–19 (2023) [Google Scholar]
  8. A. D. J. Fernandez and J. Watson, Mexico’s renewable energy innovation system: Geothermal and solar photovoltaics case study. Environ. Innov. Soc. Transitions. 43, 200–219 (2022) [CrossRef] [Google Scholar]
  9. Z. Fan, S. Li, Z. Gao, L. Zhang, X. Zheng, W. Zhu, W. Shen, M. Sjöholm, T. K. Mikkelsen, T. Wang and Y. Li, On the importance of wind turbine wake boundary to wind energy and environmental impact. Energy Convers. Manag. 277, 116664 (2023) [CrossRef] [Google Scholar]
  10. X. Xu, Q. Zhou and D. Yu, The future of hydrogen energy: Bio-hydrogen production technology. Int. J. Hydrogen Energy. 47, 33677–33698 (2022) [CrossRef] [Google Scholar]
  11. B. Gungor and I. Dincer, A renewable energy-based waste-to-energy system with hydrogen options. Int. J. Hydrogen Energy. 47, 19526–19537 (2022) [CrossRef] [Google Scholar]
  12. S. Banerjee, R. Singh and V. Singh, Bioenergy crops as alternative feedstocks for recovery of anthocyanins: A review. Environ. Technol. Innov. 29, 102977 (2023) [CrossRef] [Google Scholar]
  13. L. Xiao, J. Wang, B. Wang and H. Jiang, China’s hydropower resources and development. Sustain. 15, 3940 (2023) [CrossRef] [Google Scholar]
  14. P. K. Pathak, A. K. Yadav and S. Padmanaban, Transition toward emission-free energy systems by 2050: Potential role of hydrogen. Int. J. Hydrogen Energy. 48, 9921–9927 (2023) [CrossRef] [Google Scholar]
  15. W. Lei, Y. Yu, H. Zhang, Q. Jia and S. Zhang, Defect engineering of nanostructures: Insights into photoelectrochemical water splitting. Mater. Today. 52, 133–160 (2022) [CrossRef] [Google Scholar]
  16. U. Pratomo, R. A. Pratama, I. Irkham, A. P. Sulaeman, J. Y. Mulyana and I. Primadona, 3D-ZnO superstructure decorated with carbon-based material for efficient photoelectrochemical water-splitting under visible-light irradiation. Nanomaterials. 13, 1380 (2023) [CrossRef] [PubMed] [Google Scholar]
  17. V. Sharma, M. Prasad, A. Waghmare, Y. Hase, A. Punde, S. Shah, P. Shinde, B. Bade, R. Shrivastav, H. M. Pathan, S. P. Patole and S. Jadkar, Novel bismuth sulfide-indium (hydroxy) sulfide [Bi2S3–In(OH)xSy] nanoarchitecture for efficient photoelectrochemical water splitting. J. Power Sources. 571, 233084 (2023) [CrossRef] [Google Scholar]
  18. M. N. Shaddad, P. Arunachalam, M. Hezam, N. M. Saeedan, S. Gimenez, J. Bisquert and A. M. Al-Mayouf, Facile fabrication of heterostructured BiPS4-Bi2S3-BiVO4 photoanode for enhanced stability and photoelectrochemical water splitting performance. J. Catal. 418, 51–63 (2023) [CrossRef] [Google Scholar]
  19. P. Subramanyam, B. Meena, G. S. Neeraja, D. Suryakala and C. Subrahmanyam, Facile synthesis and photoelectrochemical performance of a Bi2S3@rGO nanocomposite photoanode for efficient water splitting. Energy and Fuels. 35, 6315–6321 (2021) [CrossRef] [Google Scholar]
  20. X. F. Wu, Y. X. Fu, T. L. Chang, Y. N. Jia, J. L. Shang, H. Wang, Z. H. Fan, C. X. Wang, J. Z. Su and L. J. Ci, Simultaneous introduction of surface plasmon resonance effect and oxygen vacancies onto Bi/Bi2O3 heterostructure for enhancing visible-light photocatalysis. Appl. Phys. A Mater. Sci. Process. 128, 1–10 (2022) [CrossRef] [Google Scholar]
  21. M. H. Sawal, A. A. Jalil, T. A. T. Abdullah, N. F. Khusnun, N. S. Hassan, F. F. A. Aziz, A. A. Fauzi, M. F. A. Kamaroddin, M. F. Omar and S. Haron, Si-Ti interaction in unique morphology of fibrous silica-titania photoanode for enhanced photoelectrochemical water splitting. Energy Convers. Manag. 274, 116456 (2022) [CrossRef] [Google Scholar]
  22. F. F. A. Aziz, A. A. Jalil, N. S. Hassan, A. A. Fauzi and M. S. Azami, Simultaneous photocatalytic reduction of hexavalent chromium and oxidation of p-cresol over AgO decorated on fibrous silica zirconia. Environ. Pollut. 285, 117490 (2021). [CrossRef] [Google Scholar]
  23. M. S. Azami, A. A. Jalil, F. F. A. Aziz, N. S. Hassan, C. R. Mamat and N. M. Izzudin, Influence of the nitrogen pots from graphitic carbon nitride with the presence of wrinkled silica-titania for photodegradation enhancement of 2-chlorophenol. Int. J. Hydrogen Energy. 48, 6532–6545 (2023) [CrossRef] [Google Scholar]
  24. N. S. Hassan, A. A. Jalil, C. N. C. Hitam and M. H. Sawal, Enhanced photooxidative desulphurization of dibenzothiophene over fibrous silica tantalum: influence of metal-disturbance electronic band structure. Int. J. Hydrogen Energy. 48, 6575–6585 (2022) [Google Scholar]
  25. N. M. Izzudin, A. A. Jalil, M. W. Ali, F. F. A. Aziz, M. S. Azami, N. S. Hassan, A. A. Fauzi, N. Ibrahim, R. Saravanan and M. H. Hassim, Promoting a well-dispersion of MoO3 nanoparticles on fibrous silica catalyst via one-pot synthesis for enhanced photoredox environmental pollutants efficiency. Chemosphere. 308, 136456 (2022) [CrossRef] [PubMed] [Google Scholar]
  26. M. Chen, X. Chang, C. Li, H. Wang and L. Jia, Ni-Doped BiVO4 photoanode for efficient photoelectrochemical water splitting. J. Colloid Interface Sci. 640, 162–169 (2023) [CrossRef] [Google Scholar]
  27. M. Mohammadi, S. Khademi, Y. Choghazardi, R. Irajirad, M. Keshtkar and A. Montazerabadi, Modified bismuth nanoparticles: a new targeted nanoprobe for computed tomography imaging of cancer. cell J. 24, 515–521 (2022) [PubMed] [Google Scholar]
  28. Y. Zhao, T. Liu, H. Xia, L. Zhang, J. Jiang, M. Shen, J. Ni and L. Gao, Branch-structured Bi2S3-CNT hybrids with improved lithium storage capability. J. Mater. Chem. A. 2, 13854–13858 (2014) [CrossRef] [Google Scholar]
  29. S. Boughdachi, Y. Azizian-Kalandaragh, Y. Badali and Altındal, Facile ultrasound-assisted and microwave-assisted methods for preparation of Bi2S3-PVA nanostructures: exploring their pertinent structural and optical properties and comparative studies on the electrical, properties of Au/(Bi2S3-PVA)/n-Si Schottky structure. J. Mater. Sci. Mater. Electron. 28, 17948–17960 (2017) [CrossRef] [Google Scholar]
  30. J. Arumugam, A. D. Raj, A. A. Irudayaraj and T. Pazhanivel, Temperature-based investigation on structure and optical properties of Bi2S3 nanoflowers by solvothermal approach. Mech. Mater. Sci. Eng. 9, 1–8 (2017) [Google Scholar]
  31. M. Y. S. Hamid, A. A. Jalil, A. F. A. Rahman and T. A. T. Abdullah, Enhanced reactive CO2 species formation: Via V2O5-promoted Ni/KCC-1 for lowtemperature activation of CO2 methanation. React. Chem. Eng. 4, 1126–1135 (2019) [CrossRef] [Google Scholar]
  32. F. Abhari, J. Charmi, H. Rezaeejam, Z. Karimimoghaddam, H. Nosrati, H. Danafar and A. Farajollahi, Folic acid modified bismuth sulfide and gold heterodimers for enhancing radio sensitization of mice tumors to x-ray radiation. ACS Sustain. Chem. Eng. 8, 5260–5269 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.