Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 01012
Number of page(s) 3
Section Energy Sustainability
DOI https://doi.org/10.1051/e3sconf/202451601012
Published online 15 April 2024
  1. J. Joy, J. Mathew, S.C. George, Nanomaterials for photoelectrochemical water splitting – review. Int. J. Hydrogen Energy 43, 4804–4817 (2018) [CrossRef] [Google Scholar]
  2. Y. Wang, J. Zhang, M.S. Balogun, Y. Tong, Y. Huang, Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Mater. Today Sustain. 18, 100118 (2022) [CrossRef] [Google Scholar]
  3. M.G. Rasul, M.A. Hazrat, M.A. Sattar, M.I. Jahirul, M.J. Shearer, The future of hydrogen: Challenges on production, storage and applications. Energy Convers. Manag. 272, 116326 (2022) [CrossRef] [Google Scholar]
  4. N.S. Hassan, A.A. Jalil, N.F. Khusnun, A. Ahmad, T.A.T. Abdullah, R.M. Kasmani, N. Norazahar, M.F.A. Kamaroddin, D.V.N. Vo, Photoelectrochemical water splitting using post-transition metal oxides for hydrogen production: a review. Environ. Chem. Lett. 20, 311 (2022) [CrossRef] [Google Scholar]
  5. M. Kumar, B. Meena, P. Subramanyam, D. Suryakala, C. Subrahmanyam, Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Mater. 14, 88 (2022) [Google Scholar]
  6. S. Chen, C. Li, Z. Hou, A novel in situ synthesis of TiO2/CdS heterojunction for improving photoelectrochemical water splitting. Int. J. Hydrogen Energy 44, 25473 (2019) [CrossRef] [Google Scholar]
  7. C. Mahala, M.D. Sharma, M. Basu, ZnO@CdS heterostructures: an efficient photoanode for photoelectrochemical water splitting. New J. Chem. 43, 7001 (2019) [CrossRef] [Google Scholar]
  8. L. Wei, J. Zhang, M. Ruan, Combined CdS/In2S3 heterostructures with cocatalyst for boosting carriers separation and photoelectrochemical water splitting. Appl. Surf. Sci. 541, 14831 (2021) [Google Scholar]
  9. A. Guerrero, J. Bisquert, Perovskite semiconductors for photoelectrochemical water splitting applications. Curr. Opin. Electroche. 2, 144 (2017) [CrossRef] [Google Scholar]
  10. Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28, 1917 (2016) [CrossRef] [PubMed] [Google Scholar]
  11. J. Wu, J. Wei, B. Lv, M. Wang, X. Wang, W. Wang, Enhanced solar-light-driven photoelectrochemical water splitting performance of type II 1D/0D CdS/In2S3 nanorod arrays. Chem. Phys. Lett. 830, 140776 (2023) [CrossRef] [Google Scholar]
  12. Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang, S. Lin, Interface optimization of ZnO nanorod/CdS quantum dots heterostructure by a facile two-step low-temperature thermal treatment for improved photoelectrochemical water splitting. Chem. Eng. J. 325, 151 (2017) [CrossRef] [Google Scholar]
  13. M. Riffat, H. Ali, H.A. Qayyum, M. Bilal, T. Hussain, Enhanced solar-driven water splitting by ZnO/CdTe heterostructure thin films-based photocatalysts. Int. J. Hydrogen Energy 48, 22069 (2023) [CrossRef] [Google Scholar]
  14. C.K. Chen, Y.-P. Shen, H.M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee, R.-S. Liu, Quantum-dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting. EurJOC 2014, 773 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.