Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 02002
Number of page(s) 6
Section Material Science
DOI https://doi.org/10.1051/e3sconf/202451602002
Published online 15 April 2024
  1. W. Nabgan, T.A. Tuan Abdullah, M. Ikram, A.H.K. Owgi, A.H. Hatta, M. Alhassan, F.F.A. Aziz, A.A. Jalil, T. Van Tran, R. Djellabi, Hydrogen and valuable liquid fuel production from the in-situ pyrolysis-catalytic steam reforming reactions of cellulose bio-polymer wastes dissolved in phenol over trimetallic Ni-La-Pd/TiCa nanocatalysts. J. Environ. Chem. Eng. 11, (2023) [Google Scholar]
  2. M. Alhassan, A.A. Jalil, M.B. Bahari, A.H.K. Owgi, W. Nabgan, N.S. Hassan, T. V. Tran, A.A. Abdulrasheed, M.Y.S. Hamid, M. Ikram, M.L. Firmansyah, H. Holilah, N.A. Sholejah, Profitable Fischer Tropsch realization via CO2-CH4 reforming; an overview of nickel-promoter-support interactions. RSC Adv. 13, 1711–1726 (2023) [CrossRef] [PubMed] [Google Scholar]
  3. J.L. Liu, Z. Li, J.H. Liu, K. Li, H.Y. Lian, X.S. Li, X. Zhu, A.M. Zhu, Warm-plasma catalytic reduction of CO2 with CH4. Catal. Today 330, 54–60 (2019). [CrossRef] [Google Scholar]
  4. J.M. Bermúdez, A. Arenillas, J.A. Menéndez, Syngas from CO2 reforming of coke oven gas: Synergetic effect of activated carbon/Ni-γAl2O3 catalyst. Int. J. Hydrogen Energy. 36, 13361–13368 (2011) [CrossRef] [Google Scholar]
  5. J. Yang, W. Ma, D. Chen, A. Holmen, B.H. Davis, Applied Catalysis A: General Fischer – Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Appl. Catal. A Gen. 470, 250–260 (2014) [CrossRef] [Google Scholar]
  6. C.C. Chong, S.N. Bukhari, Y.W. Cheng, H.D. Setiabudi, A.A. Jalil, C. Phalakornkule, Robust Ni/Dendritic fibrous SBA-15 (Ni/DFSBA-15) for methane dry reforming: Effect of Ni loadings. Appl. Catal. A Gen. 584, (2019) [Google Scholar]
  7. M. Alhassan, A.A. Jalil, W. Nabgan, M.Y.S. Hamid, M.B. Bahari, M. Ikram, Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production. Fuel. 328, (2022) [Google Scholar]
  8. A.H.K. Owgi, A.A. Jalil, M.A.A. Aziz, W. Nabgan, N.S. Hassan, I. Hussain, M. Alhassan, M.A.A. Aziz, A.H. Hatta, M.Y.S. Hamid, The preferable Ni quantity to boost the performance of FSA for dry reforming of methane. Fuel. 332, 126124 (2023) [CrossRef] [Google Scholar]
  9. C. He, S. Wu, L. Wang, J. Zhang, Recent advances in photo-enhanced dry reforming of methane: A review. J. Photochem. Photobiol C: Photochem. Rev. 51, 100468 (2022) [CrossRef] [Google Scholar]
  10. A. Androulakis, I. V Yentekakis, P. Panagiotopoulou, Dry reforming of methane over supported Rh and Ru catalysts: Effect of the support (Al2O3, TiO2, ZrO2, YSZ) on the activity and reaction pathway. Int. J. Hydrogen Energy. 48, 33886–33902 (2023) [CrossRef] [Google Scholar]
  11. C.C. Chong, H.D. Setiabudi, A.A. Jalil, Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): A sustainable catalyst for hydrogen production. Int. J. Hydrogen Energy. 45, 18533–18548 (2020) [CrossRef] [Google Scholar]
  12. C.H. Lee, B.W. Kwon, J.H. Oh, S. Kim, J. Han, S.W. Nam, S.P. Yoon, K.B. Lee, H.C. Ham, Integration of dry-reforming and sorption-enhanced water gas shift reactions for the efficient production of high-purity hydrogen from anthropogenic greenhouse gases. J. Ind. Eng. Chem. 105, 563–570 (2022) [CrossRef] [Google Scholar]
  13. K.W. Siew, H.C. Lee, J. Gimbun, C.K. Cheng, Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst. Int. J. Hydrogen Energy 39, 6927–6936 (2014) [CrossRef] [Google Scholar]
  14. N.T. Tran, Q. Van Le, N. Van Cuong, T.D. Nguyen, N.H. Huy Phuc, P.T.T. Phuong, M.U. Monir, A.A. Aziz, Q.D. Truong, S.Z. Abidin, S. Nanda, D.V.N. Vo, La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation. J. Energy Inst. 93, 1571–1580 (2020) [CrossRef] [Google Scholar]
  15. K. Li, C. Pei, X. Li, S. Chen, X. Zhang, R. Liu, J. Gong, Dry reforming of methane over La2O2CO3-modified Ni/Al2O3 catalysts with moderate metal support interaction. Appl. Catal. B. 264, 118448 (2020) [CrossRef] [Google Scholar]
  16. J. Kazimierowicz, M. Dębowski, M. Zieliński, Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO2). Int. J. Mol. Sci. 24, 4442 (2023). [CrossRef] [Google Scholar]
  17. V.A. Haaksman, M. Schouteren, M.C.M. van Loosdrecht, M. Pronk, Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge. Water Res. 233, 119803 (2023) [CrossRef] [PubMed] [Google Scholar]
  18. J. Wang, K. Zhang, M. Mertens, A. Bogaerts, V. Meynen, Applied Catalysis B: Environmental Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub) micron packings / catalysts to enhance the performance. Appl. Catal. B 337, 122977 (2023) [CrossRef] [Google Scholar]
  19. A.S. Al Fatesh, A.H. Fakeeha, A.E. Abasaeed, Rh promoted Ni over yttria – zirconia supported catalyst for hydrogen - rich syngas production through dry reforming of methane. Energy Sci. and Engineering. 9, 3265–3275 (2023) [CrossRef] [Google Scholar]
  20. A.S. Al-Fatesh, S.O. Kasim, A.A. Ibrahim, A.H. Fakeeha, A.E. Abasaeed, R. Alrasheed, R. Ashamari, A. Bagabas, Combined magnesia, ceria and nickel catalyst supported over γ-alumina doped with titania for dry reforming of methane. Catalysts 9, (2019) [Google Scholar]
  21. A.M. Ranjekar, G.D. Yadav, Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. Journal of the Indian Chemical Society. 98, 100002 (2021) [CrossRef] [Google Scholar]
  22. A.M. Manabayeva, P. M, Z. Vajglov, M. Martin, T. Tirri, T.S. Baizhumanova, V.P. Grigor, M. Zhumabek, Y.A. Aubakirov, I.L. Simakova, D.Y. Murzin, S.A. Tungatarova, Dry Reforming of Methane over Ni − Fe − Al Catalysts Prepared by Solution Combustion Synthesis. 2, (2023) [Google Scholar]
  23. C. Anil, J.M. Modak, G. Madras, Syngas production via CO2 reforming of methane over noble metal (Ru, Pt, and Pd) doped LaAlO3 perovskite catalyst. Mol. Catal. 484, 110805 (2020) [CrossRef] [Google Scholar]
  24. K. Ahn, Y.C. Chung, J.H. Oh, D. Hari Prasad, H. Kim, H.R. Kim, J.W. Son, H.W. Lee, J.H. Lee, A comparative study of catalytic partial oxidation of methane over CeO2 supported metallic catalysts. J. Nanosci. Nanotechnol. 11, 6414–6419 (2011) [CrossRef] [Google Scholar]
  25. Y. Wang, R. Zhang, B. Yan, Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane. J. Catal. 407, 77–89 (2022) [CrossRef] [Google Scholar]
  26. V. Palma, C. Ruocco, M. Cortese, M. Martino, Bioalcohol reforming: An overview of the recent advances for the enhancement of catalyst stability. Catalysts. 10, (2020) [Google Scholar]
  27. O. Muraza, A. Galadima, A review on coke management during dry reforming of methane. Intl. J. Energy Research. 1196–1216 (2015) [CrossRef] [Google Scholar]
  28. A. Wolfbeisser, O. Sophiphun, J. Bernardi, J. Wittayakun, K. Föttinger, G. Rupprechter, Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal. Today. 277, 234–245 (2016) [CrossRef] [Google Scholar]
  29. N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 82, 2570–2585 (2018). https://doi.org/10.1016/j.rser.2017.09.076. [CrossRef] [Google Scholar]
  30. M.A.A. Aziz, H.D. Setiabudi, L.P. Teh, N.H.R. Annuar, A.A. Jalil, A review of heterogeneous catalysts for syngas production via dry reforming. J. Taiwan Inst. Chem. Eng. 101, 139–158 (2019) [CrossRef] [Google Scholar]
  31. A.H.K. Owgi, A.A. Jalil, M.A.A. Aziz, M. Alhassan, H.U. Hambali, W. Nabgan, R. Saravanan, A.H. Hatta, Effect of promoters (Ce, Sr, Cs, and Sm) on the activity and coke formation of FSA support Ni in the dry reforming of methane. Fuel. 340, (2023) [Google Scholar]
  32. C.C. Chong, L.P. Teh, H.D. Setiabudi, Syngas production via CO2 reforming of CH4 over Ni-based SBA-15: Promotional effect of promoters (Ce, Mg, and Zr), Mater. Today Energy. 12, 408–417 (2019) [CrossRef] [Google Scholar]
  33. N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Catalyst design for dry reforming of methane: Analysis review. Renew. Sustain. Energy Rev. 82, 2570–2585 (2018) [CrossRef] [Google Scholar]
  34. K. Ray, S. Sengupta, G. Deo, Reforming and cracking of CH4 over Al2O3 supported Ni, Ni-Fe and Ni-Co catalysts. Fuel Process Technol. 156, 195–203 (2017) [CrossRef] [Google Scholar]
  35. M. Olazar, L. Santamaria, G. Lopez, E. Fernandez, M. Cortazar, A. Arregi, J. Bilbao, Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: A review. Energy Fuels. 35, 17051–17084 (2021) [CrossRef] [PubMed] [Google Scholar]
  36. T.J. Siang, A.A. Jalil, A.A. Abdulrasheed, H.U. Hambali, W. Nabgan, Thermodynamic equilibrium study of altering methane partial oxidation for Fischer–Tropsch synfuel production. Energy. 198, 117394 (2020) [CrossRef] [Google Scholar]
  37. M. Olazar, L. Santamaria, G. Lopez, E. Fernandez, M. Cortazar, A. Arregi, J. Bilbao, Progress on catalyst development for the steam reforming of biomass and waste plastics pyrolysis volatiles: A review. Energy Fuels. 35, 17051–17084 (2021) [CrossRef] [PubMed] [Google Scholar]
  38. H. Sharma, A. Dhir, Hydrogen augmentation of biogas through dry reforming over bimetallic nickel-cobalt catalysts supported on titania. Fuel. 279, 118389 (2020) [CrossRef] [Google Scholar]
  39. D. Pashchenko, M. Gnutikova, Thermodynamic analysis of carbon formation 25, 3643–3654 (2021). [Google Scholar]
  40. S. Jung, J. Lee, D.H. Moon, K.H. Kim, E.E. Kwon, Upgrading biogas into syngas through dry reforming. Renew. Sustain. Energy Rev. 143, 110949 (2021) [CrossRef] [Google Scholar]
  41. M.A. Peña, J.P. Gómez, J.L.G. Fierro, New catalytic routes for syngas and hydrogen production. Appl. Catal. A Gen 144, 7–57 (1996) [CrossRef] [Google Scholar]
  42. D.G. Araiza, D.G. Arcos, A. Gómez-Cortés, G. Díaz, Dry reforming of methane over Pt-Ni/CeO2 catalysts: Effect of the metal composition on the stability. Catal. Today 360, 46–54 (2021) [CrossRef] [Google Scholar]
  43. M. Li, A.C. van Veen, Tuning the catalytic performance of Ni-catalysed dry reforming of methane and carbon deposition via Ni-CeO2-x interaction. Appl. Catal. B 237, 641–648 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.