Open Access
Issue |
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 7 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/e3sconf/202451602008 | |
Published online | 15 April 2024 |
- R. Lindsey, Climate Change: Atmospheric Carbon Dioxide. 2020, ClimateWatch Magazine. Disponível em: <https://www.climate.gov/news-features/understandingclimate/climate-change-atmospheric-carbondioxide#:~:text=The%20global%20average%20atmospheric%20carbon,least%20the, 2 (2020) [Google Scholar]
- N. Zhang, Y.E. Chai, R.M. Santos, L. Šiller, Advances in process development of aqueous CO2 mineralisation towards scalability, J. Environ. Chem. Eng. 8, 104453 (2020) [CrossRef] [Google Scholar]
- Z. Kapetaki, E.M. Barbosa, Carbon capture utilisation and storage technology development report 2018 (CCUS), European Commission, (2019). [Google Scholar]
- H. Zhao, X. Luo, H. Zhang, N. Sun, W. Wei, Y. Sun, Carbon-based adsorbents for post-combustion capture: a review. Greenh. Gases: Sci. Technol. 8, 11 (2018) [CrossRef] [Google Scholar]
- B. Li, Y. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology: A patent review Appl. Energy 102, 1439 (2013) [Google Scholar]
- J. Yan, Z. Zhang, Carbon capture, utilization and storage (CCUS). Appl. Energy 235, 1289 (2019) [CrossRef] [Google Scholar]
- E.E. Ünveren, B.Ö. Monkul, Ş. Sarıoğlan, N. Karademir, E. Alper, Solid amine sorbents for CO2 capture by chemical adsorption: A review, Petroleum. 3, 37 (2017) [CrossRef] [Google Scholar]
- S. Valluri, S.K. Kawatra, Use of frothers to improve the absorption efficiency of dilute sodium carbonate slurry for post combustion CO2 capture, Fuel Process. Technol. 212, 106620 (2021) [Google Scholar]
- A. Ruhaimi, M. Aziz, A. Jalil, Magnesium oxide-based adsorbents for carbon dioxide capture: Current progress and future opportunities, J. CO2 Util. 43, 101357 (2021) [Google Scholar]
- A.H. Ruhaimi, M.A. Ab Aziz, High-performance flake-like mesoporous magnesium oxide prepared by eggshell membrane template for carbon dioxide capture. J. Solid State Chem. 300, 122242 (2021) [CrossRef] [Google Scholar]
- J.L. Chen, X.Y.M. Dong, C.L. Shi, S.H. Li, Y. Wang, J.H. Zhu, Fabrication of strong solid base FeO–MgO for warm CO2 capture. CLEAN – Soil, Air, Water 47, 1800447 (2019) [CrossRef] [Google Scholar]
- A. Ruhaimi, C. Teh, M.A. Ab Aziz, Mesoporous magnesium oxide adsorbent prepared via lime (citrus aurantifolia) peel bio-templating for CO2 capture. Bull. Chem. React. Eng. 16, 366 (2021) [CrossRef] [Google Scholar]
- A.A. Azmia, N. Ngadia, M.J. Kamaruddina, Z. Yamani, L.P.T. Zakariaa, N.H.R. Annuarc, H.D. Setiabudid, A.A. Jalile, M.A. Ab Aziza, Rapid one pot synthesis of mesoporous ceria nanoparticles by sol-gel method for enhanced CO2 capture. Chem. Eng. 72 (2019). [Google Scholar]
- W. Gao, T. Zhou, Q. Wang, Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chem. Eng. J. 336, 710 (2018) [CrossRef] [Google Scholar]
- J. Wang, M. Li, P. Lu, P. Ning, Q. Wang, Kinetic study of CO2 capture on ternary nitrates modified MgO with different precursor and morphology. Chem. Eng. J. 392, 123752 (2020) [CrossRef] [Google Scholar]
- B. Abarna, T. Preethi, A. Karunanithi, G. Rajarajeswari, Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide. Mater. Sci. Semicond. Process. 56, 243 (2016) [CrossRef] [Google Scholar]
- D. Bu, H. Zhuang, Biotemplated synthesis of high specific surface area copper-doped hollow spherical titania and its photocatalytic research for degradating chlorotetracycline. Appl. Surf. Sci. 265, 677 (2013) [CrossRef] [Google Scholar]
- L. Wang, J. Zhang, F. Chen, Synthesis of hydrothermally stable MCM-48 mesoporous molecular sieve at low cost of CTAB surfactant. Microporous Mesoporous Mater. 122, 229 (2009) [CrossRef] [Google Scholar]
- H. Chen, X. Mu, Y. Jiang, J. Huang, H. Jiang, Z. He, Nano-MgO prepared via templating on biodegradable filter paper. Micro Nano Lett. 16, 110 (2021) [CrossRef] [Google Scholar]
- Y.-S. Kang, D.Y. Kim, J. Yoon, J. Park, G. Kim, Y. Ham, I. Park, M. Koh, K. Park, Shape control of hierarchical lithium cobalt oxide using biotemplates for connected nanoparticles. J. Power Sources 436, 226836 (2019) [CrossRef] [Google Scholar]
- B. Li, J. Zhao, J. Liu, X. Shen, S. Mo, H. Tong, Bio-templated synthesis of hierarchically ordered macro-mesoporous anatase titanium dioxide flakes with high photocatalytic activity, RSC Adv. 5, 15572 (2015) [CrossRef] [Google Scholar]
- R.-Q. Sun, L.-B. Sun, Y. Chun, Q.-H. Xu, H. Wu, Synthesizing nanocrystal-assembled mesoporous magnesium oxide using cotton fibres as exotemplate. Microporous Mesoporous Mater. 111, 314 (2008) [CrossRef] [Google Scholar]
- M.A. Ab Aziz, M.R. Taib, Flake-like tea-leaf-templated magnesium oxide for carbon dioxide adsorption. Malay. J. Catal. 6, 5 (2022) [Google Scholar]
- N. Li, H. Dang, Z. Chang, X. Zhao, M. Zhang, W. Li, H. Zhou, C. Sun, Synthesis of uniformly distributed magnesium oxide micro-/nanostructured materials with deep eutectic solvent for dye adsorption. J. Alloys Compd. 808, 151571 (2019) [CrossRef] [Google Scholar]
- P.-Y. Wu, Y.-P. Jiang, Q.-Y. Zhang, Y. Jia, D.-Y. Peng, W. Xu, Comparative study on arsenate removal mechanism of MgO and MgO/TiO2 composites: FTIR and XPS analysis, New J. Chem. 40, 2878 (2016) [Google Scholar]
- L. Hopkinson, P. Kristova, K. Rutt, G. Cressey, Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim. Cosmochim. Acta. 76, 1 (2012) [CrossRef] [Google Scholar]
- J. Sivasankari, S. Selvakumar, K. Sivaji, S. Sankar, Structural and optical characterization of MgO: X (X=Li, Na, and K) by solution combustion technique. J. Alloys Compd. 616, 51 (2014) [CrossRef] [Google Scholar]
- J. Jeevanandam, Y.S. Chan, M.K. Danquah, Calcination-dependent morphology transformation of sol-gel-synthesized MgO nanoparticles. ChemistrySelect 2, 10393 (2017) [CrossRef] [Google Scholar]
- I.B. Amor, H. Hemmami, S.E. Laouini, H.B. Temam, H. Zaoui, A. Barhoum, Biosynthesis MgO and ZnO nanoparticles using chitosan extracted from Pimelia Payraudi Latreille for antibacterial applications. World J. Microbiol. Biotechnol. 39, 19 (2022) [Google Scholar]
- Z. Alothman, A Review: Fundamental aspects of silicate mesoporous materials. Mater. 5, 2874 (2012) [CrossRef] [Google Scholar]
- M. Kajama, Hydrogen permeation using nanostructured silica membranes. WIT Trans. Ecol. Environ. 193, 447 (2015) [CrossRef] [Google Scholar]
- A. Najafi, A novel synthesis method of hierarchical mesoporous MgO nanoflakes employing carbon nanoparticles as the hard templates for photocatalytic degradation, Ceram. Int. 43, 5813 (2017) [CrossRef] [Google Scholar]
- T. Pradita, S.-J. Shih, B. Aji, S. Sudibyo, Synthesis of MgO powder from magnesium nitrate using spray pyrolysis. AIP Conf. Proc. 1823, 020016 (2017) [CrossRef] [Google Scholar]
- A.M. Alkadhem, M.A. Elgzoly, S.A. Onaizi, Novel amine-functionalized magnesium oxide adsorbents for CO2 capture at ambient conditions. J. Environ. Chem. Eng. 8, 103968 (2020) [CrossRef] [Google Scholar]
- P. Li, R. Chen, Y. Lin, W. Li, General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chem. Eng. J. 404, 126459 (2021) [CrossRef] [Google Scholar]
- Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao, P. Lu, Structure-performance relationships of magnesium-based CO2 adsorbents prepared with different methods. Chem. Eng. J. 379, 122277 (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.