Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 02009
Number of page(s) 5
Section Material Science
DOI https://doi.org/10.1051/e3sconf/202451602009
Published online 15 April 2024
  1. M.R. Gogate, Methanol-to-olefins process technology: current status and future prospects. Pet Sci Technol. 37, 559–565 (2019) [CrossRef] [Google Scholar]
  2. N. Nesterenko, J. Aguilhon, P. Bodart, D. Minoux, J.P. Dath, Methanol to Olefins: An Insight into Reaction Pathways and Products Formation. Zeolites and Zeolite-like Materials. 189–263 (2016) [Google Scholar]
  3. A.K. Jamil, T. Nishitoba, M.H.M. Ahmed, Z.H. Yamani, T. Yokoi, O. Muraza, Stable Boron-Modified ZSM-22 Zeolite Catalyst for Selective Production of Propylene from Methanol. Energy Fuels. 33, 12679–12684 (2019) [CrossRef] [Google Scholar]
  4. A.A. Ismail, R.M. Mohamed, O.A. Fouad, I.A. Ibrahim, Synthesis of nanosized ZSM-5 using different alumina sources. Cryst Res Technol. 41, 145–149 (2006) [CrossRef] [Google Scholar]
  5. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catal Today. 221–228 (2011) [CrossRef] [Google Scholar]
  6. D. Zapater, J. Lasobras, J. Soler, J. Herguido, M. Menéndez, MTO with SAPO-34 in a Fixed-Bed Reactor: Deactivation Profiles. Ind Eng Chem Res. 60, 16162–16170 (2021) [CrossRef] [Google Scholar]
  7. D. Chen, K. Moljord, A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Microporous and Mesoporous Mater. 164, 239–250 (2012) [Google Scholar]
  8. X. Jiang, X. Su, X. Bai, Y. Li, L. Yang, K. Zhang, Y. Zhang, Y. Liu, W. Wu, Conversion of methanol to light olefins over nanosized [Fe,Al]ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance. Microporous and Mesoporous Mater. 263, 243–250 (2018). [CrossRef] [Google Scholar]
  9. R. Syah, A. Davarpanah, M. Elveny, A. Ghasemi, D. Ramdan, The economic evaluation of methanol and propylene production from natural gas at petrochemical industries in Iran. Sustainability (Switzerland). 13 (2021) [Google Scholar]
  10. J. Zhong, J. Han, Y. Wei, Z. Liu, Catalysts and shape selective catalysis in the methanol-to-olefin (MTO) reaction. J Catal. 396, 23–31 (2021) [CrossRef] [Google Scholar]
  11. S.L. Lawton, M.E. Leonowicz, R.D. Partridge, P. Chu, M.K. Rubin, Twelve-ring pockets on the external surface of MCM-22 crystals. (1998) [Google Scholar]
  12. H.K. Min, M.B. Park, S.B. Hong, Methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites. J Catal. 271, 186–194 (2010) [CrossRef] [Google Scholar]
  13. P. Wang, L. Huang, J. Li, M. Dong, J. Wang, T. Tatsumi, W. Fan, Catalytic properties and deactivation behavior of H-MCM-22 in the conversion of methanol to hydrocarbons. RSC Adv. 5, 28794–28802 (2015) [CrossRef] [Google Scholar]
  14. A. Lacarriere, F. Luck, D. Świerczyński, F. Fajula, V. Hulea, Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Appl. Catal. A Gen. 402, 208–217 (2011) [CrossRef] [Google Scholar]
  15. L. Zhang, H. Wang, G. Liu, K. Gao, J. Wu, Methanol-to-olefin conversion over H-MCM-22 catalyst. J. Mol Catal. A Chem. 411, 311–316 (2016) [CrossRef] [Google Scholar]
  16. L. Zhang, H. Wang, G. Liu, K. Gao, J. Wu, Conversion of methanol to light olefins over H-MCM-22 dealuminated with different methods. J. Chem Technol. Biotechnol. 92, 1353–1361 (2017) [CrossRef] [Google Scholar]
  17. M. García-Ruiz, D.A. Solís-Casados, J. Aguilar-Pliego, C. Márquez-Álvarez, E. Sastre-de Andrés, D. Sanjurjo-Tartalo, R. Sáinz-Vaque, M. Grande-Casas, Synthesis of 10 and 12 Ring Zeolites (MCM-22, TNU-9 and MCM-68) Modified with Zn and Its Potential Application in the Reaction of Methanol to Light Aromatics and Olefins. Top Catal. 63, 451–467 (2020) [Google Scholar]
  18. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, M. Hunger, Phosphorus modified HMCM-22: Characterization and catalytic application in methanol-to-hydrocarbons conversion. Microporous and Mesoporous Mater. 151, 99–106 (2012) [CrossRef] [Google Scholar]
  19. J. Chen, T. Liang, J. Li, S. Wang, Z. Qin, P. Wang, L. Huang, W. Fan, J. Wang, Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catal. 6, 2299–2313 (2016). [CrossRef] [Google Scholar]
  20. X. Wang, R. Li, C. Yu, Y. Liu, Study on the reconstruction in the crystallization process of mordenite. Microporous and Mesoporous Mater. 311, (2021) [Google Scholar]
  21. M.G. Shelyapina, E.A. Krylova, A.S. Mazur, A.A. Tsyganenko, Y. V. Shergin, E.A. Satikova, V. Petranovskii, Active Sites in H-Mordenite Catalysts Probed by NMR and FTIR. Catalysts. 13, 334 (2023) [Google Scholar]
  22. M. Cui, L. Wang, Y. Zhang, Y. Wang, C. Meng, Changes of medium-range structure in the course of crystallization of mordenite from diatomite. Microporous and Mesoporous Mater. 206, 52–57 (2015) [CrossRef] [Google Scholar]
  23. Z. Ma, J. Xie, J. Zhang, W. Zhang, Y. Zhou, J. Wang, Mordenite zeolite with ultrahigh SiO2/Al2O3 ratio directly synthesized from ionic liquid-assisted dry-gel-conversion. Microporous and Mesoporous Mater. 224, 17–25 (2016) [CrossRef] [Google Scholar]
  24. W. Song, J.F. Haw, J.B. Nicholas, C.S. Heneghan, Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34. J. Am. Chem. Soc. 122, 10726–10727 (2000) [CrossRef] [Google Scholar]
  25. H.G. Kim, K.Y. Lee, H.G. Jang, Y.S. Song, G. Seo, Simulation of methanol-to-olefin reaction over SAPO-34 catalysts with different particle sizes: Formation of active sites and deactivation. Korean J. Chem. Eng. 27, 1773–1779 (2010) [CrossRef] [Google Scholar]
  26. J.W. Park, S.J. Kim, M. Seo, S.Y. Kim, Y. Sugi, G. Seo, Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions. Appl. Catal. A Gen. 349, 76–85 (2008) [CrossRef] [Google Scholar]
  27. T. He, G. Hou, J. Li, X. Liu, S. Xu, X. Han, X. Bao, Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite, J. Energy Chem. 26, 354–358 (2017) [CrossRef] [Google Scholar]
  28. F.B. Shareh, M. Kazemeini, M. Asadi, M. Fattahi, Metal promoted mordenite catalyst for methanol conversion into light olefins. Pet. Sci. Technol. 32, 1349–1356 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.