Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 05001
Number of page(s) 9
Section Electronic and Electrical Engineering
DOI https://doi.org/10.1051/e3sconf/202451605001
Published online 15 April 2024
  1. S. Zeng, L. Zeng, R. Wang, W. Guo, H. Tang, Effect of elevated temperature annealing on Nafion/SiO2 composite membranes for the all-vanadium redox flow battery Polymers (Basel) 10, 3091 (2018) [Google Scholar]
  2. B. G. Thiam, S. Vaudreuil, Review—Recent membranes for vanadium redox flow batteries J. Electrochem. Soc. 168, 070553 (2021) [CrossRef] [Google Scholar]
  3. Z. Huang, A. Mu, L. Wu, B. Yang, Y. Qian, J. Wang, Comprehensive analysis of critical issues in all-vanadium redox flow battery ACS Sustainable Chemistry & Engineering 10, 7786 (2022) [Google Scholar]
  4. J. Sharma, V. Kulshrestha, Advancements in polyelectrolyte membrane designs for vanadium redox flow battery (VRFB). Results Chem. 5, 100892 (2023) [CrossRef] [Google Scholar]
  5. Vanitec. Vanadium Redox Flow Battery (VRFB), 9/2/2023, https://vanitec.org/vanadium/map (2023) [Google Scholar]
  6. L. Ge, T. Liu, Y. Zhang, H. Liu, Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature. Front. Chem. Sci. Eng. 18, (2023) [Google Scholar]
  7. A. Parasuraman, T. M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 101, 27 (2013) [CrossRef] [Google Scholar]
  8. C. H. L. Tempelman, J. F. Jacobs, R. M. Balzer, V. Degirmenci, Membranes for all vanadium redox flow batteries. J. Energy Storage 32, (2020) [Google Scholar]
  9. T. N. L. Doan, T. K. A. Hoang, P. Chen, Recent development of polymer membranes as separators for all-vanadium redox flow batteries. RSC Adv. 5, 72805 (2015) [CrossRef] [Google Scholar]
  10. Y. Ke, W. Yuan, F. Zhou, W. Guo, J. Li, Z. Zhuang, X. Su, B. Lu, Y. Zhao, Y. Tang, Y. Chen, J. Song, A critical review on surface-pattern engineering of nafion membrane for fuel cell applications. Renew. Sustain. Energy Rev. 145, 110860 (2021) [CrossRef] [Google Scholar]
  11. J. Li, F. Xu, Y. Chen, Y. Han, B. Lin, Sulfonated poly(ether ether ketone)/sulfonated covalent organic framework composite membranes with enhanced performance for application in vanadium redox flow batteries. ACS Appl. Energy Mater. 5, 15856 (2022) [CrossRef] [Google Scholar]
  12. X. Lou, B. Lu, M. He, Y. Yu, X. Zhu, F. Peng, C. Qin, M. Ding, C. Jia, Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J. Membr. Sci. 643, (2022) [Google Scholar]
  13. P. Qian, H. Wang, L. Zhang, Y. Zhou, H. Shi, An enhanced stability and efficiency of SPEEK-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow batter. J. Membr. Sci. 643, (2022) [Google Scholar]
  14. G. Wang, M. Zhang, Z. He, J. Zhang, J. Chen, R. Wang, A. Teng, Y. Dai, Novel amphoteric ion exchange membranes by blending sulfonated poly(ether ether ketone) with ammonium polyphosphate for vanadium redox flow battery applications. J. Appl. Polym. Sci. 138, (2021) [Google Scholar]
  15. Y. Zhang, H. Liu, M. Liu, X. Ma, D. Liang, P. Qian, J. Yan, Highly ion selective sulfonated poly(ether ether ketone)/polyzwitterion functionalized graphene oxides hybrid membrane for vanadium redox flow battery. Int. J. Hydrogen Energy 53, 229 (2024) [CrossRef] [Google Scholar]
  16. J. Long, W. Huang, J. Li, Y. Yu, B. Zhang, J. Li, Y. Zhang, H. Duan, A novel permselective branched sulfonated polyimide membrane containing crown ether with remarkable proton conductance and selectivity for application in vanadium redox flow battery. J. Membr. Sci. 669, (2023) [Google Scholar]
  17. J. Li, J. Liu, W. Xu, J. Long, W. Huang, Z. He, S. Liu, Y. Zhang, A sulfonated polyimide/nafion blend membrane with high proton selectivity and remarkable stability for vanadium redox flow battery. Membranes (Basel) 11, (2021) [Google Scholar]
  18. J. Long, H. Yang, Y. Wang, W. Xu, J. Liu, H. Luo, J. Li, Y. Zhang, H. Zhang, Branched sulfonated polyimide/sulfonated methylcellulose composite membranes with remarkable proton conductivity and selectivity for vanadium redox flow batteries. ChemElectroChem 7, 937 (2020) [CrossRef] [Google Scholar]
  19. J. Li, H. Li, H. Duan, J. Long, W. Huang, Y. Yu, W. Zhu, L. Chen, J. Chen, Y. Zhang, Sulfonated polyimide membranes with branched architecture and unique diamine monomer for implementation in vanadium redox flow battery. J. Power Sources 591, (2024) [Google Scholar]
  20. Y. Wang, S. Wang, M. Xiao, D. Han, M. A. Hickner, Y. Meng, ayer-by-layer self-assembly of PDDA/PSS-SPFEK composite membrane with low vanadium permeability for vanadium redox flow battery. RSC Adv. 3, 15467 (2013) [CrossRef] [Google Scholar]
  21. Y. Wang, S. Wang, M. Xiao, D. Han, Y. Meng, Preparation and characterization of a novel layer-by-layer porous composite membrane for vanadium redox flow battery (VRB) applications. Int. J. Hydrogen Energy 39, 16088 (2014) [CrossRef] [Google Scholar]
  22. M. A. Aziz, S. Shanmugam, Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J. Mater. Chem. A 5, 16663 (2017) [CrossRef] [Google Scholar]
  23. S. I. Hossain, M. A. Aziz, D. Han, P. Selvam, S. Shanmugam, Fabrication of SPAEK–cerium zirconium oxide nanotube composite membrane with outstanding performance and durability for vanadium redox flow batteries. J. Mater. Chem. A 6, 20205 (2018) [CrossRef] [Google Scholar]
  24. S.-W. Choi, T.-H. Kim, S.-W. Jo, J. Y. Lee, S.-H. Cha, Y. T. Hong, Hydrocarbon membranes with high selectivity and enhanced stability for vanadium redox flow battery applications: Comparative study with sulfonated poly(ether sulfone)s and sulfonated poly(thioether ether sulfone)s. Electrochim. Acta 259, 427 (2018) [CrossRef] [Google Scholar]
  25. S.-H. Yang, D.-S. Yang, S. J. Yoon, S. So, S.-K. Hong, D. M. Yu, Y. T. Hong, TEMPO radical-embedded perfluorinated sulfonic acid ionomer composites for vanadium redox flow batteries. Energy & Fuels 34, 7631 (2020) [CrossRef] [Google Scholar]
  26. J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang, K. Zhao, M. Ding, C. Jia, L. Sun, Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv. Energy Mater. 10, (2020) [Google Scholar]
  27. G. Palanisamy, T. H. Oh, TiO2 containing hybrid composite polymer membranes for vanadium redox flow batteries. Polymers (Basel) 14, (2022) [Google Scholar]
  28. X. Lou, D. Yuan, Y. Yu, Y. Lei, M. Ding, Q. Sun, C. Jia, A cost-effective nafion composite membrane as an effective vanadium-ion barrier for vanadium redox flow batteries. Chem Asian J 15, 2357 (2020) [CrossRef] [PubMed] [Google Scholar]
  29. R. K. Iler, Multilayers of colloidal particles. J. Colloid Interface Sci. 21, 569 (1966) [CrossRef] [Google Scholar]
  30. G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232 (1997) [CrossRef] [Google Scholar]
  31. X. Zhang, Y. Xu, X. Zhang, H. Wu, J. Shen, R. Chen, Y. Xiong, J. Li, S. Guo, Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 89, 76 (2019) [CrossRef] [Google Scholar]
  32. D. Ding, A. Yaroshchuk, M. L. Bruening, Electrodialysis through nafion membranes coated with polyelectrolyte multilayers yields >99% pure monovalent ions at high recoveries. J. Membr. Sci. 647, 120294 (2022) [CrossRef] [Google Scholar]
  33. C. Wang, M. J. Park, H. Yu, H. Matsuyama, E. Drioli, H. K. Shon, Park, H. Yu, H. Matsuyama, E. Drioli, H.K. Shon, Recent advances of nanocomposite membranes using layer-by-layer assembly. J. Membr. Sci. 661, 120926 (2022) [CrossRef] [Google Scholar]
  34. K. Tang, N. A. Besseling, Formation of polyelectrolyte multilayers: ionic strengths and growth regimes. Soft Matter. 12, 1032 (2016) [CrossRef] [PubMed] [Google Scholar]
  35. N. Joseph, P. Ahmadiannamini, R. Hoogenboom, I. F. J. Vankelecom, Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation. Polym. Chem. 5, 1817 (2014) [CrossRef] [Google Scholar]
  36. M. Kim, D. Ha, J. Choi, Nanocellulose-modified nafion 212 membrane for improving performance of vanadium redox flow batteries. Bull. Korean Chem. Soc. 40, 533 (2019) [CrossRef] [Google Scholar]
  37. T. T. Jia, S. Shen, L. B. Xiao, J. Jin, J. Zhao, Q. T. Che, Constructing multilayered membranes with layer-by-layer self-assembly technique based on graphene oxide for anhydrous proton exchange membranes. European Polymer J. 122, (2020) [Google Scholar]
  38. J. Hu, Z. Yang, Layer-by-layer self-assembly preparation and desalination performance of graphene oxide membrane. Water Supply 22, 126 (2022) [CrossRef] [Google Scholar]
  39. V. I. Vlasov, N. A. Gvozdik, M. D. Mokrousov, S. V. Ryazantsev, S. Y. Luchkin, D. A. Gorin, K. J. Stevenson, Stevenson, Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. J. Power Sources 540, 231640 (2022) [CrossRef] [Google Scholar]
  40. J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, X. Qiu, Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Mater. Chem. 18, 1232 (2008) [CrossRef] [Google Scholar]
  41. B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, comparative study of Nafion series membranes for vanadium redox flow batteries. J. Membr. Sci. 510, 18 (2016) [CrossRef] [Google Scholar]
  42. S. S. Sha’rani, E. Abouzari-Lotf, M. M. Nasef, A. Ahmad, T. M. Ting, R. R. Ali, Improving the redox flow battery performance of low-cost thin polyelectrolyte membranes by layer-by-Layer Surface assembly. J. Power Sources 413, 182 (2019) [CrossRef] [Google Scholar]
  43. H. Y. Yoo, A. Heo, C. G. Cho, layer-by-layer assembled sulfonated poly(phenylene oxide) membrane based on nafion for vanadium redox flow battery. J. Nanosci. Nanotechnol. 16, 10515 (2016) [CrossRef] [Google Scholar]
  44. S. I. Hossain, M. A. Aziz, S. Shanmugam, Ultrahigh ion-selective and durable Nafion-NdZr composite layer membranes for all-vanadium redox flow batteries. ACS Sustain. Chem. Eng. 8, 1998 (2020) [CrossRef] [Google Scholar]
  45. S. S. Sha’rani, M. M. Nasef, N. W. C. Jusoh, E. D. M. Isa, R. R. Ali, A highly-selective layer-by-layer membrane modified with polyethylenimine and graphene oxide for vanadium redox flow battery. Sci. Technol. Adv. Mater. 25, 2300697 (2024) [CrossRef] [PubMed] [Google Scholar]
  46. C. Wang, M. J. Park, R. R. Gonzales, H. Matsuyama, E. Drioli, H. K. Shon, Graphene oxide-based layer-by-layer nanofiltration membrane using inkjet printing for desalination Desalination 549 (2023) [Google Scholar]
  47. E. Halakoo, X. Feng, Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep. Purif. Technol. 234, 116077 (2020) [CrossRef] [Google Scholar]
  48. Y.-H. Gu, X. Yan, Y. Chen, X.-J. Guo, W.-Z. Lang, xquisite manipulation of two-dimensional laminar graphene oxide (GO) membranes via layer-by-layer self-assembly method with cationic dyes as cross-linkers. J. Membr. Sci. 658, (2022) [Google Scholar]
  49. A. J. Gosse, K. C. Nunes, L. Komsiyska, G. Wittstock, ayer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J. Membr. Sci. 510, 259 (2016) [CrossRef] [Google Scholar]
  50. S. S. Sha’rani, E. Abouzari-Lotf, M. M. Nasef, A. Ahmad, T. M. Ting, R. R. Ali, Improved vanadium barrier properties of perfluorinated sulfonic acid membranes for vanadium redox flow battery. IOP Conference Series: Materials Science and Engineering 458 (2018) [Google Scholar]
  51. L. Zhang, L. Ling, M. Xiao, D. Han, S. Wang, Y. Meng, Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures. J. Power Sources 352, 111 (2017) [CrossRef] [Google Scholar]
  52. X. Teng, C. Yu, X. Wu, Y. Dong, P. Gao, H. Hu, Y. Zhu, J. Dai, PTFE/SPEEK/PDDA/PSS composite membrane for vanadium redox flow battery application. J. Mater. Sci. 53, 5204 (2017) [Google Scholar]
  53. S. O. Tung, S. L. Fisher, N. A. Kotov, L. T. Thompson, Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nat. Commun. 9, 4193 (2018) [CrossRef] [Google Scholar]
  54. J. Irigoyen, L. Han, I. Llarena, Z. Mao, C. Gao, S. E. Moya, Responsive polyelectrolyte multilayers assembled at high ionic strength with an unusual collapse at low ionic strength. Macromol. Rapid Commun. 33, 1964 (2012) [CrossRef] [PubMed] [Google Scholar]
  55. C. Dong, R. He, S. Xu, H. He, H. Chen, Y.-B. Zhang, T. He, Layer-by-layer (LBL) hollow fiber nanofiltration membranes for seawater treatment: Ion rejection Desalination 534 (2022) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.