Open Access
Issue |
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
|
|
---|---|---|
Article Number | 06001 | |
Number of page(s) | 11 | |
Section | Safety | |
DOI | https://doi.org/10.1051/e3sconf/202451606001 | |
Published online | 15 April 2024 |
- R. K. Eckhoff, Dust explosions in the process industries. J. Hazard. Mater. 54, 266–267 (1991) [Google Scholar]
- K. L. Cashdollar, M. Hertzberg, Industrial dust explosions. Lancet. 181, 121–121 (1987) [Google Scholar]
- Li, G., Yang, H.-X., Yuan, C.-M., Eckhoff, R. K., A catastrophic aluminium-alloy dust explosion in China. J. Loss. Prevent. Proc. 39, 121–130 (2016) [CrossRef] [Google Scholar]
- T. Zhang, H. Jiang, S. Shang, K. Zhang, W. Gao, Synthesis of aluminum hydroxide/Zinc borate composite inhibitor and its inhibition effect on aluminum dust explosion. Chem. Eng. Sci. 248, 117204 (2022) [CrossRef] [Google Scholar]
- T. Abbasi, S.A. Abbasi, Dust explosions–Cases, causes, consequences, and control. J. Hazard Mater. 140, 7–44 (2007) [CrossRef] [Google Scholar]
- G. Li, H.-X. Yang, C.-M. Yuan, R.K. Eckhoff, A catastrophic aluminium-alloy dust explosion in China. J. Loss Prev. Process Ind. 39, 121–130 (2016) [CrossRef] [Google Scholar]
- H. Dai, X. Wang, X. Chen, X. Nan, Y. Hu, S. He, B. Yuan, Q. Zhao, Z. Dong, P. Yang, Suppression characteristics of double-layer wire mesh on wheat dust flame. Powder Technol. 360, 231–240 (2020) [CrossRef] [Google Scholar]
- N. Kuai, J. Li, Z. Chen, W. Huang, J. Yuan, W. Xu, Experiment-based investigations of magnesium dust explosion characteristics. J. Loss Prev. Process Ind. 24, 302–313 (2011) [CrossRef] [Google Scholar]
- N. Kuai, W. Huang, B. Du, J. Yuan, Z. Li, Y. Gan, J. Tan, Experiment-based investigations on the effect of ignition energy on dust explosion behaviors. J. Loss Prev. Process Ind. 26, 869–877 (2013) [CrossRef] [Google Scholar]
- A. Di Benedetto, P. Russo, P. Amyotte, N. Marchand, Modelling the effect of particle size on dust explosions, Chem. Eng. Sci. 65, 772–779 (2010) [CrossRef] [Google Scholar]
- C. Kauffman, Agricultural dust explosions in grain handling facilities. Fuel-air. Explos. 305–347 (1982). [Google Scholar]
- W. L. Frank, Dust explosion prevention and the critical importance of housekeeping. Process Saf. Prog. 23, 175–184 (2004) [CrossRef] [Google Scholar]
- C. Huang, X. Chen, B. Yuan, H. Zhang, S. Shang, Q. Zhao, H. Dai, S. He, Y. Zhang, Y. Niu, Insight into suppression performance and mechanisms of ultrafine powders on wood dust deflagration under equivalent concentration. J. Hazard Mater. 394, 122584 (2020) [CrossRef] [Google Scholar]
- Q. Zhao, X. Chen, H. Dai, C. Huang, J. Liu, S. He, B. Yuan, P. Yang, H. Zhu, G. Liang, B. Zhang, Inhibition of diammonium phosphate on the wheat dust explosion. Powder Technol. 367, 751–761 (2020) [CrossRef] [Google Scholar]
- X. Chen, H. Zhang, X. Chen, X. Liu, Y. Niu, Y. Zhang, B. Yuan, Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution. J. Loss Prev. Process Ind. 49, 905–911 (2017) [CrossRef] [Google Scholar]
- Gauckler, L.J., Waeber, M.M., Conti, C., M. Jacob-Duliere, Ceramic Foam for Molten metal Filtration. JOM 37, 47–50 (1985) [CrossRef] [Google Scholar]
- E.A. Dawson, P.A. Barnes, M.J. Chinn, Preparation and characterisation of carbon-coated ceramic foams for organic vapour adsorption. Carbon. 44, 1189–1197 (2006) [CrossRef] [Google Scholar]
- M V. Twigg, J.T. Richardson, Fundamentals and Applications of Structured Ceramic Foam Catalysts. Ind. Eng. Chem. Res. 46, 4166–4177 (2007) [CrossRef] [Google Scholar]
- B. Nie, X. He, R. Zhang, W. Chen, J. Zhang, The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J Hazard Mater. 192, 741–747 (2011) [CrossRef] [PubMed] [Google Scholar]
- J. Zhang, Z. Sun, Y. Zheng, Z. Su, Coupling effects of foam ceramics on the flame and shock wave of gas explosion. Safety Science. 50, 797–800 (2012) [CrossRef] [Google Scholar]
- L. Pang, C. Wang, M. Han, Z. Xu, A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy J Hazard Mater. 299, 174–180 (2015) [Google Scholar]
- K.M. Mokhtar, R.M. Kasmani, C.R.C. Hassan, M.D. Hamid, M.I.M. Nor, N. Ibrahim, Study of the Explosibility Characteristics of Aluminium-Silver Metal Mixtures. Combust. Sci. Technol. 192, 885–901 (2019) [Google Scholar]
- Y. Luo, Y. Jiang, J. Zhu, J. Tu, and S. Jiao, Surface treatment functionalization of sodium hydroxide onto 3D printed porous Ti6Al4V for improved biological activities and osteogenic potencies. J Mater Res Technol. 9, 13661–13670 (2020). [CrossRef] [Google Scholar]
- S. Chandren, B. Ohtani, Preparation and reaction of titania particles encapsulated in hollow silica shells as an efficient photocatalyst for stereoselective synthesis of pipecolinic acid. Chem. Lett. 41, 677–679 (2012) [CrossRef] [Google Scholar]
- N.F. Hamzah, R.M. Kasmani, S. Chandren, N. Ibrahim, A.A. Jalil, Effect of metal coating on physicochemical properties of ceramic foam for flame suppression application. Ceram Int. (2023) [Google Scholar]
- K.M. Mokhtar, R.M. Kasmani, C.R.C. Hassan, M.D. Hamid, M.I.M. Nor, M.U.M. Junaidi, N. Ibrahim, Nanometal Dust Explosion in Confined Vessel: Combustion and Kinetic Analysis. ACS Omega. 6 (2021) [Google Scholar]
- W. Gao, X. Zhang, D. Zhang, Q. Peng, Q. Zhang, R, Dobashi, Flame propagation behaviours in nano-metal dust explosions. Powder Technol. 321, 154–162 (2017) [CrossRef] [Google Scholar]
- J. Sun, R. Dobashi, T. Hirano, Structure of flames propagating through aluminum particles cloud and combustion process of particles. J. Loss Prev. Process Ind. 19, 769–773 (2006) [CrossRef] [Google Scholar]
- J. Bouillard, A. Vignes, O. Dufaud, L. Perrin, D. Thomas, Ignition and explosion risks of nanopowders. J Hazard Mater. 181, 873–880 (2010) [CrossRef] [PubMed] [Google Scholar]
- M. Mittal, Explosion characteristics of micron-and nano-size magnesium powders. J. Loss Prev. Process Ind. 27, 55–64 (2014) [CrossRef] [Google Scholar]
- P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B: Biointerfaces. 108, 255–259 (2013) [CrossRef] [Google Scholar]
- H. Yu, Z. Guo, B. Li, G. Yao, H. Luo, and Y. Liu, Research into the effect of cell diameter of aluminum foam on its compressive and energy absorption properties. Mater. Sci. Eng. A. 454, 542–546 (2007) [CrossRef] [Google Scholar]
- H. L. Green, & W. R Lane, Particulate clouds: Dusts, smokes and mists (2nd ed.). London. Belfast: E. & F.N. Spon Ltd., Printed by The University Press (1964) [Google Scholar]
- N. Iida, O. Kawaguchi, G.T. Sato, Premixed flame propagating into a narrow channel at a high speed, part 1: flame behaviors in the channel. Combust. Flame. 60, 245–255 (1985) [CrossRef] [Google Scholar]
- M.I. Radulescu, J.H.S. Lee, The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame. 131, 29–46 (2002) [CrossRef] [Google Scholar]
- H.I. Joo, K. Duncan, G. Ciccarelli, Flame-quenching performance of ceramic foam, Combust. Sci Technol. 178, 1755–1769 (2006) [CrossRef] [Google Scholar]
- B. Nie, X. He, R. Zhang, W. Chen, J. Zhang, The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation. J Hazard Mater. 192, 741–747 (2011) [CrossRef] [PubMed] [Google Scholar]
- G. Ciccarelli, C. Johansen, M. Parravani, Transition in the propagation mechanism during flame acceleration in porous media. Proc. Combust. Inst. 33, 2273–2278 (2011) [CrossRef] [Google Scholar]
- Q. Zhao, H. Dai, X. Chen, C. Huang, H. Zhang, Y. Li, S. He, B. Yuan, P. Yang, H. Zhu, G. Liang, B. Zhang, Characteristics of wheat dust flame with the influence of ceramic foam. Adv. Powder Technol. 31, 3570–3581 (2020) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.