Open Access
Issue
E3S Web Conf.
Volume 516, 2024
10th Conference on Emerging Energy and Process Technology (CONCEPT 2023)
Article Number 06002
Number of page(s) 7
Section Safety
DOI https://doi.org/10.1051/e3sconf/202451606002
Published online 15 April 2024
  1. R.D. McCarty, J. Hord, H.M. Roder, Selected properties of hydrogen (engineering design data). Gaithersburg, MD (1981) [Google Scholar]
  2. A. Rodionov, H. Wilkening, P. Moretto, Risk assessment of hydrogen explosion for private car with hydrogen-driven engine. Int. J. Hydrog. Energy 36, 2398 (2011) [CrossRef] [Google Scholar]
  3. T. Jin, Y. Liu, J. Wei, M. Wu, G. Lei, H. Chen, Y. Lan, Modeling and analysis of the flammable vapor cloud formed by liquid hydrogen spills. Int. J. Hydrog. Energy 42, 26762 (2017) [CrossRef] [Google Scholar]
  4. X. Shao, L. Pu, Q. Li, Y. Li, Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions. Int. J. Hydrog. Energy 43, 5249 (2018) [CrossRef] [Google Scholar]
  5. M. Dadashzadeh, A. Ahmad, F. Khan, Dispersion modelling and analysis of hydrogen fuel gas released in an enclosed area: A CFD-based approach. Fuel 184, 192 (2016) [CrossRef] [Google Scholar]
  6. Rajesh Paul, Animesh Mondal, Shoukat Choudhury, Dispersion Modeling of Accidental Release of Chlorine Gas, in: International Conference on Chemical Engineering 2014 (ICChE2014), Dhaka, Bangladesh (2014) [Google Scholar]
  7. N. Pandya, E. Marsden, P. Floquet, N. Gabas, Toxic Release Dispersion Modelling with PHAST: Parametric Sensitivity Analysis, in: CISAP- 3rd International Conference on Safety & Environment in Process Industry 2008, Rome, Italy, 179–186 (2008). [Google Scholar]
  8. K. Groth, J. LaChance, A. Harris, Early-stage quantitative risk assessment to support development of codes and standard requirements for indoor fueling of hydrogen vehicles., Albuquerque, NM, and Livermore, CA (United States) (2012) [Google Scholar]
  9. L. Zhiyong, P. Xiangmin, M. Jianxin, Harm effect distances evaluation of severe accidents for gaseous hydrogen refueling station. Int. J. Hydrog. Energy 35, 1515 (2010) [CrossRef] [Google Scholar]
  10. Roland Dávid, Toyota’s fuel cell stack in detail, (2020). [Google Scholar]
  11. J. LaChance, Risk-informed separation distances for hydrogen refueling stations. Int. J. Hydrog. Energy 34, 5838 (2009) [CrossRef] [Google Scholar]
  12. J.L. LaChance, B. Middleton, K.M. Groth, Comparison of NFPA and ISO approaches for evaluating separation distances, Int J Hydrogen Energy 37, 17488 (2012) [CrossRef] [Google Scholar]
  13. J. LaChance, A. Tchouvelev, J. Ohi, Risk-informed process and tools for permitting hydrogen fueling stations, Int J Hydrogen Energy 34, 5855 (2009) https://doi.org/10.1016/j.ijhydene.2009.01.057. [CrossRef] [Google Scholar]
  14. J. LaChance, W. Houf, L. Fluer, B. Middleton, Analyses to support development of risk-informed separation distances for hydrogen codes and standards., Albuquerque, NM, and Livermore, CA (United States) (2009) [Google Scholar]
  15. N.A. Eisenberg, C.J. Lynch, R.J. Breeding, Vulnerability model: a simulation system for assessing damage resulting from marine spills, US Coast Guard, Office of Research and Development (1975) [Google Scholar]
  16. Q. Guo, E.S. Hecht, M.L. Blaylock, J.G. Shum, C. Jordan, Physics model validation of propane and methane for Hydrogen Plus Other Alternative Fuels Risk Assessment Models (HyRAM+). Process Saf. Environ. Prot. 173, 22 (2023) [CrossRef] [Google Scholar]
  17. S.Z. Sulaiman, R.M. Kasmani, A. Mustafa, S.D. Emami, Flame propagation in a straight and 90-degree bend pipe for premixed hydrogen/air and methane/air. IOP Conf. Ser. Mater. Sci. Eng. 736, 022019 (2020) [CrossRef] [Google Scholar]
  18. M. Vanuzzo, M. Carcassi, Safety distances: Comparison of the methodologies for their determination (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.