Open Access
Issue
E3S Web of Conf.
Volume 517, 2024
The 10th International Conference on Engineering, Technology, and Industrial Application (ICETIA 2023)
Article Number 10003
Number of page(s) 7
Section Energy
DOI https://doi.org/10.1051/e3sconf/202451710003
Published online 15 April 2024
  1. Mehdi R, Naqvi SR, Khoja AH, Hussain R. Biomass derived activated carbon by chemical surface modification as a source of clean energy for supercapacitor application. Fuel. 2023 Sep;348:128529. [CrossRef] [Google Scholar]
  2. Nagaraju K, Byatarayappa G, R S, M. Bhatta U, Venkatesh K, N N. Design of symmetric supercapacitor from biowaste derived carbon for flashlight applications with superior cycle’s stability. Inorganic Chemistry Communications. 2023 Nov;157:111404. [CrossRef] [Google Scholar]
  3. Chen H, Guo Y chuan, Wang F, Wang G, Qi P rong, Guo X hong, et al. An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Materials. 2017 Dec;32(6):592–9. [CrossRef] [Google Scholar]
  4. Devi R, Kumar V, Kumar S, Kumar Sisodiya A, Kumar Mishra A, Jatrana A, et al. Development of activated carbon by bio waste material for application in supercapacitor electrodes. Materials Letters. 2023 Mar;335:133830. [CrossRef] [Google Scholar]
  5. Ai J, Yang S, Sun Y, Liu M, Zhang L, Zhao D, et al. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. Journal of Power Sources. 2021 Feb;484:229221. [CrossRef] [Google Scholar]
  6. Li R, Dong Z, Zhou Q. Synthesis and modification of corncob-based carbon as high performance negative material for supercapacitor. Ganesapillai M, Abdullah AZ, editors. E3S Web of Conferences. 2023 May 4;385:01031. [Google Scholar]
  7. Diantoro, M., Luthfiyah, I., Wisodo, H., Utomo, J., & Meevasana W. Electrochemical Performance of Symmetric Supercapacitor Based on Activated Carbon Biomass TiO2 Nanocomposites. 2022. 2243(1):12–77. [Google Scholar]
  8. Pallarés J, González-Cencerrado A, Arauzo I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy. 2018 Aug;115:64–73. [CrossRef] [Google Scholar]
  9. Singh A, Ojha AK. Orange peel derived activated carbon for supercapacitor electrode material. Journal of Materials Science: Materials in Electronics. 2023 Apr 20;34(11):1003. [CrossRef] [Google Scholar]
  10. Ospino, J., Parra-Barraza, J. P., Cervera, S., Coral-Escobar, E. E., & Vargas-Ceballos OA. Activated carbon from cassava peel: A promising electrode material for supercapacitors. Revista Facultad de Ingeniería Universidad de Antioquia. 2022;102:88–95. [Google Scholar]
  11. Zhang Z, Lu S, Li Y, Song J, Han E, Wang H, et al. Promoting hierarchical porous carbon derived from Bamboo via copper doping for high-performance supercapacitors. Industrial Crops and Products. 2023 Nov;203:117155. [CrossRef] [Google Scholar]
  12. Wati R, Fadlly TA, Harmawan T. Characteristic of energy gap (Eg) ZnO/active karbon composite from palm fruits (elaeis guineensis jack) for solar cell application. Jurnal Fisika. 2019 Dec 27;9(2):60–8. [CrossRef] [Google Scholar]
  13. Supawet Phainuphong, Juntakan Taweekun, Kittinan Maliwan, Thanansak Theppaya, Md Sumon Reza, Abul Kalam Azad. Synthesis and Characterization of Activated Carbon Derived from Rubberwood Sawdust via Carbonization and Chemical Activation as Electrode Material for Supercapacitor. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2022 May 24;94(2):61–76. [CrossRef] [Google Scholar]
  14. Kusdarini E, Budianto A, Ghafarunnisa D, Pertambangan JT, Mineral FT, Kelautan D. Produksi karbon aktif dari batubara bituminus dengan aktivasi tunggal H3PO4, kombinasi H3PO4- NH4HCO3, dan termal. Reaktor. 2017 Jun 5;17(2):74–80. [CrossRef] [Google Scholar]
  15. Deng J, Xiong T, Wang H, Zheng A, Wang Y. Effects of Cellulose, Hemicellulose, and Lignin on the Structure and Morphology of Porous Carbons. ACS Sustainable Chemistry & Engineering. 2016 Jul 5;4(7):3750–6. [CrossRef] [Google Scholar]
  16. Song, S., Ma, F., Wu, G., Ma, D., Geng, W., & Wan J. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. Journal of materials chemistry A. 2015;3(35):18154–62. [CrossRef] [Google Scholar]
  17. Kigozi M, Kali R, Bello A, Padya B, Kalu-Uka GM, Wasswa J, et al. Modified activation process for supercapacitor electrode materials from african maize cob. Materials. 2020 Dec;13(23):1–20. [Google Scholar]
  18. Li, Q., Hu, M., Wang, K., & Wang X. One-step approach for fabrication of 3D porous carbon/graphene composites as supercapacitor electrode materials. Catalysis Today, 330, 228-239. Catalysis Today. 2019;330:228–39. [CrossRef] [Google Scholar]
  19. Lu, Z., Liu, X., Wang, T., Huang, X., Dou, J., Wu, D., Yu, J., Wu, S. and Chen X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range. Journal of Colloid and Interface Science. 2023;638:709–18. [CrossRef] [PubMed] [Google Scholar]
  20. Atta, M.M., Zakaly, H.M., Almousa, N., Abdel Reheem, A.M., Madani, M., Kandil, U.F., Henaish, A.M.A. and Taha EO. Nitrogen plasma synthesis of flexible supercapacitors based on reduced graphene oxide/aloe vera/carbon nanotubes nanocomposite. Carbon Letters. 2023;1–10. [Google Scholar]
  21. Li QY, Li ZS, Lin L, Wang XY, Wang YF, Zhang CH, et al. Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application. Chemical Engineering Journal. 2010 Jan 15;156(2):500–4. [CrossRef] [Google Scholar]
  22. Farma R, Putri A, Taer E, Awitdrus A, Apriwandi A. Synthesis of highly porous activated carbon nanofibers derived from bamboo waste materials for application in supercapacitor. Journal of Materials Science: Materials in Electronics. 2021 Mar 23;32(6):7681–91. [CrossRef] [Google Scholar]
  23. Jiang C, Yakaboylu GA, Yumak T, Zondlo JW, Sabolsky EM, Wang J. Activated carbons prepared by indirect and direct CO2 activation of lignocellulosic biomass for supercapacitor electrodes. Renewable Energy. 2020 Aug;155:38–52. [CrossRef] [Google Scholar]
  24. Gontijo LOL, Junior MNB, Santos de Sá D, Letichevsky S, Pedrozo-Peñafiel MJ, Aucélio RQ, et al. 3D conductive monolithic carbons from pyrolyzed bamboo for microfluidic self-heating system. Carbon. 2023 Sep;213:118214. [CrossRef] [Google Scholar]
  25. LI Q, WANG H, DAI Q, YANG J, ZHONG Y. Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch. Solid State Ionics. 2008 Apr;179(7–8):269–73. [CrossRef] [Google Scholar]
  26. Xue B, Xu J, Xiao R. Synthesis of Hierarchically Porous Carbon with Tailored Porosity and Electrical Conductivity Derived from Hard–Soft Carbon Precursors for Enhanced Capacitive Performance. ACS Sustainable Chemistry & Engineering. 2021 Nov 29;9(47):15925–34. [CrossRef] [Google Scholar]
  27. Shukla SK, Al Mushaiqri NRS, Al Subhi HM, Yoo K, Al Sadeq H. Low-cost activated carbon production from organic waste and its utilization for wastewater treatment. Applied Water Science. 2020 Feb 25;10(2):62. [CrossRef] [Google Scholar]
  28. Sahoo SS, Vijay VK, Chandra R, Kumar H. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Cleaner Engineering and Technology. 2021 Jul;3:100101. [CrossRef] [Google Scholar]
  29. Dubey P, Shrivastav V, Maheshwari PH, Sundriyal S. Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon. 2020 Dec;170:1–29. [CrossRef] [Google Scholar]
  30. Om Prakash M, Raghavendra G, Ojha S, Panchal M. Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Materials Today: Proceedings. 2021;39:1476–81. [CrossRef] [Google Scholar]
  31. Kwiatkowski M, Broniek E. An analysis of the porous structure of activated carbons obtained from hazelnut shells by various physical and chemical methods of activation. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017 Sep;529:443–53. [CrossRef] [Google Scholar]
  32. Guo Y, Wang Q. Fabrication and Characterization of Activated Carbon from Phyllostachys edulis Using Single-Step KOH Activation with Different Temperatures. Processes. 2022 Aug 28;10(9):1712. [CrossRef] [Google Scholar]
  33. Bello A, Dangbegnon J, Momodu DY, Ochai-Ejeh FO, Oyedotun KO, Manyala N. Green and scalable synthesis of 3D porous carbons microstructures as electrode materials for high rate capability supercapacitors. RSC Advances. 2018;8(71):40950–61. [CrossRef] [Google Scholar]
  34. Zheng T, Zhao H, Nishimoto K, Konishi T, Kamano M, Okumoto Y, et al. Synthesis and Evaluation of Bamboo-Based Activated Carbon as an Electrode Material for Electric Double Layer Capacitor. International Journal of Electrochemical Science. 2022 Nov;17(11):221120. [CrossRef] [Google Scholar]
  35. Taer E, Iwantono, Yulita M, Taslim R, Subagio A, Salomo, et al. Composite electrodes of activated carbon derived from cassava peel and carbon nanotubes for supercapacitor applications. In 2013. p. 70–4. [Google Scholar]
  36. Sankar S, Ahmed ATA, Inamdar AI, Im H, Im Y Bin, Lee Y, et al. Biomass-derived ultrathin mesoporous graphitic carbon nanoflakes as stable electrode material for high-performance supercapacitors. Materials & Design. 2019 May;169:107688. [CrossRef] [Google Scholar]
  37. Laschuk nadia o, Easton e bradley, Zenkina olena v. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. royal society of chemistry. 2021;11:27925–36. [Google Scholar]
  38. He S, Jiang SP. Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances. Progress in Natural Science: Materials International. 2021 Jun;31(3):341–72. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.