Open Access
Issue
E3S Web of Conf.
Volume 517, 2024
The 10th International Conference on Engineering, Technology, and Industrial Application (ICETIA 2023)
Article Number 10004
Number of page(s) 9
Section Energy
DOI https://doi.org/10.1051/e3sconf/202451710004
Published online 15 April 2024
  1. Z. Li, Y. Xu, J. Cui, H. Dou, and X. Zhang, ‘High- efficiency zinc thermal charging supercapacitors enabled by hierarchical porous carbon electrodes’, J Power Sources, vol. 555, Jan. 2023, doi: 10.1016/j.jpowsour.2022.232386. [Google Scholar]
  2. J. Ling-Chin, H. Bao, Z. Ma, W. Taylor, and A. Paul Roskilly, ‘State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry’, in Energy Conversion - Current Technologies and Future Trends, IntechOpen, 2019. doi: 10.5772/intechopen.78701. [Google Scholar]
  3. S. Hur et al., ‘Low-grade waste heat recovery scenarios: Pyroelectric, thermomagnetic, and thermogalvanic thermal energy harvesting’, Nano Energy, vol. 114, Sep. 2023, doi: 10.1016/j.nanoen.2023.108596. [Google Scholar]
  4. H. Ma et al., ‘Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes’, ACS Energy Lett, vol. 4, no. 8, pp. 1810–1815, Aug. 2019, doi: 10.1021/acsenergylett.9b00944. [CrossRef] [Google Scholar]
  5. L. Kush, S. Srivastava, C. Sasikumar, S. K. Vajpai, Y. Srivastava, and Y. Jaiswal, ‘Composition- dependent tunability of thermoelectric properties at low temperature for Pr-doped LPFCO double perovskite’, Journal of Materials Science: Materials in Electronics, vol. 33, no. 22, pp. 17535–17550, Aug. 2022, doi: 10.1007/s10854-022-08616-9. [CrossRef] [Google Scholar]
  6. Y. Huang, X. Zhao, J. Le Ke, X. J. Zha, J. Yang, and W. Yang, ‘Engineering nanoscale solid networks of ionogel for enhanced thermoelectric power output and excellent mechanical properties’, Chemical Engineering Journal, vol. 456, Jan. 2023, doi: 10.1016/j.cej.2022.141156. [Google Scholar]
  7. A. Ashfaq et al., ‘Enhancing the thermoelectric power factor of nanostructured SnO2 via Bi substitution’, Ceram Int, vol. 49, no. 7, pp. 10360–10364, Apr. 2023, doi:10.1016/j.ceramint.2022.11.216. [CrossRef] [Google Scholar]
  8. Z. Zhou et al., ‘Multiple effects of Bi doping in enhancing the thermoelectric properties of SnTe’, J Mater Chem A Mater, vol. 4, no. 34, pp. 13171–13175, 2016, doi: 10.1039/c6ta04240f. [CrossRef] [Google Scholar]
  9. G. Yang et al., ‘Enhanced thermoelectric performance and mechanical strength of n-type BiTeSe materials produced via a composite strategy’, Chemical Engineering Journal, vol. 428, Jan. 2022, doi 10.1016/j.cej.2021.131205. [Google Scholar]
  10. J. Wang, Y. Qiang Chen, Y. Jun Liu, G. Kang Liu, R. Jie Cai, and J. Wang, ‘Experimental investigation of energy storage and reuse of recovered waste heat based on thermoelectric generation’, Appl Therm Eng, vol. 219, Jan. 2023, doi: 10.1016/j.applthermaleng.2022.119602. [Google Scholar]
  11. Y. Du et al., ‘Multi-objective optimization of an innovative power-cooling integrated system based on gas turbine cycle with compressor inlet air pre- cooling, Kalina cycle, and ejector refrigeration cycle’, Energy Convers Manag, vol. 244, Sep. 2021, doi: 10.1016/j.enconman.2021.114473. [PubMed] [Google Scholar]
  12. R. Zahedi, A. Ahmadi, and R. Dashti, ‘Energy, exergy, exergoeconomic and exergoenvironmental analysis and optimization of quadruple combined solar, biogas, SRC and ORC cycles with methane system’, Renewable and Sustainable Energy Reviews, vol. 150, Oct. 2021, doi: 10.1016/j.rser.2021.111420. [CrossRef] [Google Scholar]
  13. U. Sreevidya, V. Shalini, K. K. Bharathi, E. S. Kumar, M. Prakash, and M. Navaneethan, ‘Enhancing the thermoelectric performance by defect structures induced in p-type polypyrrole- polyaniline nanocomposite for room-temperature thermoelectric applications’, Journal of Materials Science: Materials in Electronics, vol. 33, no. 15, pp. 11650–11660, May 2022, doi: 10.1007/s10854-022-08112-0. [CrossRef] [Google Scholar]
  14. K. Yang, K. Cho, S. Yang, Y. Park, and S. Kim, ‘A laterally designed all-in-one energy device using a thermoelectric generator-coupled micro supercapacitor’, Nano Energy, vol. 60, pp. 667–672, Jun. 2019, doi 10.1016/j.nanoen.2019.04.016. [CrossRef] [Google Scholar]
  15. Z. Liang et al., ‘Next‐Generation Energy Harvesting and Storage Technologies for Robots Across All Scales’, Advanced Intelligent Systems, vol. 5, no. 4, Apr. 2023, doi: 10.1002/aisy.202200045. [Google Scholar]
  16. J. D. Phillips, ‘Energy Harvesting in Nanosystems: Powering the Next Generation of the Internet of Things’, Frontiers in Nanotechnology, vol. 3. Frontiers Media S.A., Mar. 12, 2021. doi: 10.3389/fnano.2021.633931. [CrossRef] [Google Scholar]
  17. V. Vignesh et al., ‘Thermo-chemically functionalized porous featured bio-carbon based asymmetric supercapacitor for new limits of energy storage’, Surfaces and Interfaces, vol. 35, Dec. 2022, doi: 10.1016/j.surfin.2022.102418. [CrossRef] [Google Scholar]
  18. W. H. Chen, P. H. Wu, and Y. L. Lin, ‘Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm’, Appl Energy, vol. 209, pp. 211–223, Jan. 2018, doi: 10.1016/j.apenergy.2017.10.094. [CrossRef] [Google Scholar]
  19. W. Yang, W. Zhu, Y. Yang, L. Huang, Y. Shi, and C. Xie, ‘Thermoelectric Performance Evaluation and Optimization in a Concentric Annular Thermoelectric Generator under Different Cooling Methods’, Energies (Basel), vol. 15, no. 6, Mar. 2022, doi 10.3390/en15062231. [Google Scholar]
  20. X. Hao et al., ‘Performance Optimization for PbTe- Based Thermoelectric Materials’, Frontiers in Energy Research, vol. 9. Frontiers Media S.A., Oct. 20, 2021. doi: 10.3389/fenrg.2021.754532. [Google Scholar]
  21. Z. Bu et al., ‘A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery’, Nat Commun, vol. 13, no. 1, Dec. 2022, doi: 10.1038/s41467-021-27916-y. [Google Scholar]
  22. G. S. Hegde, A. N. Prabhu, R. Y. Huang, and Y. K. Kuo, ‘Reduction in thermal conductivity and electrical resistivity of indium and tellurium co- doped bismuth selenide thermoelectric system’, Journal of Materials Science: Materials in Electronics, vol. 31, no. 22, pp. 19511–19525, Nov. 2020, doi: 10.1007/s10854-020-04383-7. [CrossRef] [Google Scholar]
  23. M. Diantoro, S. K. G. Tiana, U. Sa’adah, R. A. Sawitri, C. I. Yogihati, and Sunaryono, ‘Bismuth and thermal induced electrical conductivity of high temperature thermoelectric SrTi1-xBixO3 system’, in AIP Conference Proceedings, American Institute of Physics Inc., Apr. 2020. doi: 10.1063/5.0000992. [Google Scholar]
  24. C. Fu, Y. Sun, and C. Felser, ‘Topological thermoelectrics’, APL Materials, vol. 8, no. 4. American Institute of Physics Inc., Apr. 01, 2020. doi: 10.1063/5.0005481. [Google Scholar]
  25. A. T. T. Pham et al., ‘Improved thermoelectric power factor achieved by energy filtering in ZnO: Mg/ZnO hetero-structures’, Thin Solid Films, vol. 721, Mar. 2021, doi: 10.1016/j.tsf.2021.138537. [Google Scholar]
  26. X. Shi et al., ‘Enhanced thermoelectric properties of hydrothermally synthesized n-type Se&Lu- codoped Bi2Te3’, Journal of Advanced Ceramics, vol. 9, no. 4, pp. 424–431, Aug. 2020, doi: 10.1007/s40145-020-0382-9. [CrossRef] [Google Scholar]
  27. H. B. Kang et al., ‘Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators’, ACS Appl Mater Interfaces, vol. 12, no. 32, pp. 36706–36714, Aug. 2020, doi:10.1021/acsami.0c08413. [CrossRef] [PubMed] [Google Scholar]
  28. Y. Muddassir et al., ‘Morphology-dependent thermoelectric properties of mixed phases of copper sulfide (Cu2−xS) nanostructures synthesized by hydrothermal method’, Appl Phys A Mater Sci Process, vol. 127, no. 6, Jun. 2021, doi: 10.1007/s00339-021-04599-2. [CrossRef] [Google Scholar]
  29. S. B. Mary, M. Francis, V. G. Sathe, V. Ganesan, and A. L. Rajesh, ‘Enhanced thermoelectric property of nanostructured CaMnO3 by sol-gel hydrothermal method’, Physica B Condens Matter, vol. 575, Dec. 2019, doi: 10.1016/j.physb.2019.411707. [Google Scholar]
  30. U. Rehman et al., ‘Improving the thermoelectric performance of hydrothermally synthesized FeS2 nanoparticles by post sulfurization’, Ceram Int, vol. 46, no. 12, pp. 20496–20499, Aug. 2020, doi:10.1016/j.ceramint.2020.05.154. [CrossRef] [Google Scholar]
  31. R. Cao, Z. Zhu, X. J. Li, X. Hu, and H. Song, ‘Enhanced thermoelectric properties of the Lu- doped and CNT-dispersed Bi 2 Te 3 alloy’, Appl Phys A Mater Sci Process, vol. 125, no. 2, Feb. 2019, doi: 10.1007/s00339-019-2427-x. [Google Scholar]
  32. P. Li, X. Ai, Q. Zhang, S. Gu, L. Wang, and W. Jiang, ‘Enhanced thermoelectric performance of hydrothermally synthesized polycrystalline Te- doped SnSe’, Chinese Chemical Letters, vol. 32, no. 2, pp. 811–815, Feb. 2021, doi: 10.1016/j.cclet.2020.04.046. [CrossRef] [Google Scholar]
  33. S. Ma et al., ‘Effects of Ni Magnetic Nanoparticles on Thermoelectric Properties of n-Type Bi2Te2.7Se0.3 Materials’, J Electron Mater, vol. 49, no. 5, pp. 2881–2889, May 2020, doi:10.1007/s11664-020-07956-8. [CrossRef] [Google Scholar]
  34. G. Tan, M. Ohta, and M. G. Kanatzidis, ‘Thermoelectric power generation’, doi: 10.2307/26759170. [Google Scholar]
  35. A. Ashfaq et al., ‘Al doping induced high thermoelectric performance in Cu2ZnSnS4 nanoparticles synthesized by the hydrothermal method’, Ceram Int, vol. 47, no. 24, pp. 35356–35360, Dec. 2021, doi:10.1016/j.ceramint.2021.09.078. [CrossRef] [Google Scholar]
  36. Z. A. Akbar, J. W. Jeon, and S. Y. Jang, ‘Intrinsically self-healable, stretchable thermoelectric materials with a large ionic Seebeck effect’, Energy Environ Sci, vol. 13, no. 9, pp. 2915–2923, Sep. 2020, doi: 10.1039/c9ee03861b. [CrossRef] [Google Scholar]
  37. J. Jacob et al., ‘Improved thermoelectric performance of Al and Sn doped ZnO nanoparticles by the engineering of secondary phases’, Ceram Int, vol. 46, no. 10, pp. 15013–15017, Jul. 2020, doi: 10.1016/j.ceramint.2020.03.031. [CrossRef] [Google Scholar]
  38. E. M. M. Ibrahim et al., ‘Effect of surfactant concentration on the morphology and thermoelectric power factor of PbTe nanostructures prepared by a hydrothermal route’, Physica E Low Dimens Syst Nanostruct, vol. 125, Jan. 2021, doi: 10.1016/j.physe.2020.114396. [Google Scholar]
  39. Y. Bai et al., ‘Graphene Oxide Embedded in Bi 2 S 3 Nanosheets by Hydrothermal Method to Enhance Thermoelectric Performance’. [Online]. Available: https://ssrn.com/abstract=4169522 [Google Scholar]
  40. L. Zhang et al., ‘Octahedral SnO 2 /Graphene Composites with Enhanced Gas-Sensing Performance at Room Temperature’, ACS Appl Mater Interfaces, vol. 11, no. 13, pp. 12958–12967, Apr. 2019, doi: 10.1021/acsami.8b22533. [CrossRef] [PubMed] [Google Scholar]
  41. X. Dai, Z. Huang, and F. Zu, ‘Enhanced Thermoelectric and Mechanical Properties of n- type Bi2Te2.7Se0.3 Bulk Alloys by Electroless Plating with Cu’, Journal Wuhan University of Technology, Materials Science Edition, vol. 34, no. 4, pp. 840–844, Aug. 2019, doi 10.1007/s11595-019-2126-7. [CrossRef] [Google Scholar]
  42. M. A. Zoui, S. Bentouba, J. G. Stocholm, and M. Bourouis, ‘A review on thermoelectric generators: Progress and applications’, Energies, vol. 13, no. 14. MDPI AG, Jul. 01, 2020. doi:10.3390/en13143606. [Google Scholar]
  43. X. D. Zhao et al., ‘Enhanced thermoelectric performance of tin oxide through antimony doping and introducing pore structures’, J Mater Sci, vol. 56, no. 3, pp. 2360–2371, Jan. 2021, doi:10.1007/s10853-020-05291-1. [CrossRef] [Google Scholar]
  44. M. A. A. Mohamed, H. M. Ali, E. M. M. Ibrahim, and M. M. Wakkad, ‘Optical, Electrical, and Thermoelectric Properties of Hydrothermally Synthesized Bi 2 Te 3 Nanoflakes’, Physica Status Solidi (A) Applications and Materials Science, vol. 216, no. 7, Apr. 2019, doi: 10.1002/pssa.201800958. [Google Scholar]
  45. Y. E. Putri, S. M. Said, and M. Diantoro, ‘Nanoarchitectured titanium complexes for thermal mitigation in thermoelectric materials’, Renewable and Sustainable Energy Reviews, vol. 101. Elsevier Ltd, pp. 346–360, Mar. 01, 2019. doi: 10.1016/j.rser.2018.10.006. [CrossRef] [Google Scholar]
  46. X. D. Zhao et al., ‘Enhanced thermoelectric performance of tin oxide through antimony doping and introducing pore structures’, J Mater Sci, vol. 56, no. 3, pp. 2360–2371, Jan. 2021, doi:10.1007/s10853-020-05291-1. [CrossRef] [Google Scholar]
  47. X. Dai, J. Nan, and Q. Cheng, ‘Enhanced Thermoelectric and Mechanical Properties of p- type Bi0.5Sb1.5Te3 Bulk Alloys by Composite Electroless Plating with Ni&Cu’, Journal Wuhan University of Technology, Materials Science Edition, vol. 37, no. 5, pp. 1009–1013, Oct. 2022, doi: 10.1007/s11595-022-2624-x. [CrossRef] [Google Scholar]
  48. M. Diantoro et al., ‘Rapid Preparation of Co1- xMxSb3 (M = Fe, Mn) Skutterudites two series lling: Enabling high-e thermoelectric Rapid Preparation of Co 1-x M x Sb 3 (M = Fe, Mn) Skutterudites two series filling: Enabling high- efficiency thermoelectric’, 2023, doi: 10.21203/rs.3.rs-3307402/v1. [Google Scholar]
  49. D. Aditya, A. Sawitri, and M. Diantoro, ‘Electrical Properties of Tetrahedrite CuS based Thermoelectric Material’, 2018. [Online]. Available: http://www.sciencedirect.com [Google Scholar]
  50. D. Aditya et al., ‘The effect of Ag on the thermoelectric performance of Cu1-xAgxS tetrahedrite/Al prepared using modified polyol methods’, in Journal of Physics: Conference Series, Institute of Physics Publishing, Jul. 2020. doi: 10.1088/1742-6596/1572/1/012071. [Google Scholar]
  51. Z. R. Yang and C. J. Liu, ‘Thermoelectric Transport in p-Type (Pb0.98Na0.02Te)1−x(Zn0.85Al0.15Te)x-Te Composites Fabricated Using a Combination of Hydrothermal Synthesis and Evacuating-and- Encapsulating Sintering’, J Electron Mater, vol. 49, no. 5, pp. 2954–2961, May 2020, doi: 10.1007/s11664-020-07994-2. [CrossRef] [Google Scholar]
  52. F. Wu and W. Wang, ‘Thermoelectric Performance of n-Type Polycrystalline Bi2Te3 by Melt Spinning Following High-Pressure Sintering’, J Electron Mater, vol. 52, no. 1, pp. 276–283, Jan. 2023, doi: 10.1007/s11664-022-09985-x. [CrossRef] [Google Scholar]
  53. P. Kumar, S. Kumar, A. Kumar, and V. Verma, ‘Lithium-doped SnO2 porous ceramics-based hydroelectric cells: a novel green energy source for sustainable power generation’, Journal of Materials Science: Materials in Electronics, vol. 32, no. 11, pp. 14833–14845, Jun. 2021, doi: 10.1007/s10854-021-06037-8. [CrossRef] [Google Scholar]
  54. L. Chu et al., ‘Doping induced enhanced photocatalytic performance of SnO2:Bi3+ quantum dots toward organic pollutants’, Colloids Surf A Physicochem Eng Asp, vol. 589, Feb. 2020, doi: 10.1016/j.colsurfa.2020.124416. [Google Scholar]
  55. D. G. Pacheco-Salazar, F. F. H. Aragón, L. Villegas-Lelovsky, A. Ortiz de Zevallos, G. E. Marques, and J. A. H. Coaquira, ‘Engineering of the band gap induced by Ce surface enrichment in Ce-doped SnO2 nanocrystals’, Appl Surf Sci, vol. 527, Oct. 2020, doi: 10.1016/j.apsusc.2020.146794. [CrossRef] [Google Scholar]
  56. R. G. Drabeski et al., ‘Raman and photoacoustic spectroscopies of SnO2 thin films deposited by spin coating technique’, Vib Spectrosc, vol. 109, Jul. 2020, doi: 10.1016/j.vibspec.2020.103094. [CrossRef] [Google Scholar]
  57. M. Kandasamy et al., ‘Ni-Doped SnO2 Nanoparticles for Sensing and Photocatalysis’, ACS Appl Nano Mater, vol. 1, no. 10, pp. 5823–5836, Oct. 2018, doi: 10.1021/acsanm.8b01473. [CrossRef] [Google Scholar]
  58. H. Sharma Akkera et al., ‘Studies of the effect of Bi-doped on structural, electrical, optical properties of spin-coated SnO2 transparent conducting oxide thin films’. [Online]. Available: https://ssrn.com/abstract=4017500 [Google Scholar]
  59. M. P. Subramaniam et al., ‘Electrospun SnO2 and its composite V2O5 nanofibers for thermoelectric power generator’, J Solgel Sci Technol, vol. 98, no. 1, pp. 183–192, Apr. 2021, doi: 10.1007/s10971-020-05443-4. [CrossRef] [Google Scholar]
  60. K. Chaibi, M. Benhaliliba, and A. Ayeshamariam, ‘Computational assessment and experimental study of optical and thermoelectric properties of rutile SnO2 semiconductor’, Superlattices Microstruct, vol. 155, Jul. 2021, doi: 10.1016/j.spmi.2021.106923. [CrossRef] [Google Scholar]
  61. P. Leangtanom, A. Wisitsoraat, K. Jaruwongrungsee, N. Chanlek, S. Phanichphant, and V. Kruefu, ‘Highly sensitive and selective ethylene gas sensors based on CeOx-SnO2 nanocomposites prepared by a Co-precipitation method’, Mater Chem Phys, vol. 254, Nov. 2020, doi: 10.1016/j.matchemphys.2020.123540. [CrossRef] [Google Scholar]
  62. J. Divya, A. Pramothkumar, S. Joshua Gnanamuthu, D. C. Bernice Victoria, and P. C. Jobe prabakar, ‘Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach’, Physica B Condens Matter, vol. 588, Jul. 2020, doi: 10.1016/j.physb.2020.412169. [CrossRef] [Google Scholar]
  63. K. Sathiyamurthy, ‘Synthesis of pure SnO2 nanospheres by co-precipitation method’, Malaya Journal of Matematik, vol. S, no. 2, 1247, doi: 10.26637/MJM0S20/0330. [Google Scholar]
  64. D. Maharana, J. Niu, D. Gao, Z. Xu, and J. Shi, ‘ Electrochemical Degradation of Rhodamine B over Ti/SnO 2 ‐Sb Electrode ’, Water Environment Research, vol. 87, no. 4, pp. 304–311, Apr. 2015, doi: 10.2175/106143015x14212658613514. [CrossRef] [PubMed] [Google Scholar]
  65. N. L. Kartika et al., ‘Thermopower Enhancement of Rutile-type SnO2 Nanocrystalline Using Facile Co- Precipitation Method’, Jurnal Elektronika dan Telekomunikasi, vol. 20, no. 2, p. 82, Dec. 2020, doi: 10.14203/jet.v20.82-88. [CrossRef] [Google Scholar]
  66. Y. C. Chang and S. H. Wu, ‘Bi-functional Al-doped ZnO@SnO 2 heteronanowires as efficient substrates for improving photocatalytic and SERS performance’, Journal of Industrial and Engineering Chemistry, vol. 76, pp. 333–343, Aug. 2019, doi: 10.1016/j.jiec.2019.03.058. [CrossRef] [Google Scholar]
  67. N. Rani, K. Khurana, and N. Jaggi, ‘Structural and electrical properties of MWCNTs/ SnO2 nanocomposites via hydrothermal and co- precipitation route: A comparative study’, Applied Nanoscience (Switzerland), vol. 11, no. 8, pp. 2291–2301, Aug. 2021, doi: 10.1007/s13204-021-01968-4. [CrossRef] [Google Scholar]
  68. S. Asaithambi et al., ‘Preparation of Fe- SnO2@CeO2 nanocomposite electrode for asymmetric supercapacitor device performance analysis’, J Energy Storage, vol. 36, Apr. 2021, doi: 10.1016/j.est.2021.102402. [CrossRef] [Google Scholar]
  69. J. L. A. Do Nascimento, L. Chantelle, I. M. G. Dos Santos, A. L. M. de Oliveira, and M. C. F. Alves, ‘The Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review’, Catalysts, vol. 12, no. 4. MDPI, Apr. 01, 2022. doi: 10.3390/catal12040428. [Google Scholar]
  70. A. Kumar, M. Chitkara, G. Dhillon, and N. Kumar, ‘ Facile Synthesis and Structural, Microstructural, and Dielectric Characteristics of SnO 2 -CeO 2 Semiconducting Binary Nanocomposite ’, ECS Trans, vol. 107, no. 1, pp. 3739–3747, Apr. 2022, doi: 10.1149/10701.3739ecst. [CrossRef] [Google Scholar]
  71. A. Debataraja, D. W. Zulhendri, B. Yuliarto, Nugraha, Hiskia, and B. Sunendar, ‘Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications’, in Procedia Engineering, Elsevier Ltd, 2017, pp. 60–64. doi: 10.1016/j.proeng.2017.03.011. [Google Scholar]
  72. P. Ren, L. Qi, K. You, and Q. Shi, ‘Hydrothermal Synthesis of Hierarchical SnO2 Nanostructures for Improved Formaldehyde Gas Sensing’, Nanomaterials, vol. 12, no. 2, Jan. 2022, doi: 10.3390/nano12020228. [Google Scholar]
  73. M. Diantoro, Kholid, A. A. Mustikasari, and Yudiyanto, ‘The Influence of SnO2 Nanoparticles on Electrical Conductivity, and Transmittance of PANI-SnO2 Films’, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jun. 2018. doi: 10.1088/1757-899X/367/1/012034. [Google Scholar]
  74. F. Aziz et al., ‘Facile synthesis of NiO/ZnO nano- composite by Co-precipitation, characterization and photocatalytic study of colored and colorless organic pollutants by solar irradiation’, Physica B Condens Matter, vol. 640, Sep. 2022, doi: 10.1016/j.physb.2022.413858. [CrossRef] [Google Scholar]
  75. J. Divya, A. Pramothkumar, S. Joshua Gnanamuthu, D. C. Bernice Victoria, and P. C. Jobe Prabakar, ‘Structural, optical, electrical and magnetic properties of Cu and Ni doped SnO2 nanoparticles prepared via Co-precipitation approach’, Physica B Condens Matter, vol. 588, Jul. 2020, doi: 10.1016/j.physb.2020.412169. [CrossRef] [Google Scholar]
  76. C. Y. Li et al., ‘Thermoelectric and mechanical properties of Bi0.42Sb1.58Te3/SnO2 bulk composites with controllable ZT peak for power generation’, J Eur Ceram Soc, 2023, doi: 10.1016/j.jeurceramsoc.2023.09.082. [Google Scholar]
  77. B. Adiperdana, N. L. Kartika, and I. A. Dharmawan, ‘Electronic and Thermoelectric Properties on Rutile SnO2 Under Compressive and Tensile Strains Engineering’, Jurnal Elektronika dan Telekomunikasi, vol. 22, no. 2, p. 95, Dec. 2022, doi: 10.55981/jet.506. [CrossRef] [Google Scholar]
  78. C. Khelifi, A. Attaf, H. Saidi, A. Yahia, and M. Dahnoun, ‘Investigation of F doped SnO 2 thin films properties deposited via ultrasonic spray technique for several applications’, Surfaces and Interfaces, vol. 15, pp. 244–249, Jun. 2019, doi: 10.1016/j.surfin.2019.04.001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.