Open Access
Issue
E3S Web of Conf.
Volume 517, 2024
The 10th International Conference on Engineering, Technology, and Industrial Application (ICETIA 2023)
Article Number 12008
Number of page(s) 6
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202451712008
Published online 15 April 2024
  1. A. Osswald, Baur, Brinkmann Oberbach S. Osswald · Baur · Brinkmann Oberbach · Schmachtenberg International Plastics Handbook. 2015; [Google Scholar]
  2. Lee ST, Ramesh NS. Polymeric foams: Mechanisms and materials. Polymeric Foams: Mechanisms and Materials. 2004. 1–337 p. [Google Scholar]
  3. Luetzel G. Plasticisers. Kunststoffe - German Plastics. 1987;77(10):96–9. [Google Scholar]
  4. Eaves D. Handbook Polymer of foams. Handbook of Polymer Foams. 2004. 155–173 p. [Google Scholar]
  5. Polyurethanes [Internet]. [cited 2023 Nov 3]. Available from: https://www.essentialchemicalindustry.org/polymer s/polyurethane.html [Google Scholar]
  6. Plastics Europe GMR, Conversio Market & Strategy GmbH. Plastics - the Facts 2019. 2019;14, 35. [Google Scholar]
  7. Das S, Heasman P, Ben T, Qiu S. Porous Organic Materials: Strategic Design and Structure-Function Correlation. Chemical Reviews. 2017;117(3):1515–63. [CrossRef] [PubMed] [Google Scholar]
  8. Polyurethane Foam Market Size, Share & Analysis to 2027 [Internet]. [cited 2023 Nov 3]. Available from: https://www.lucintel.com/polyurethane-foam- market.aspx [Google Scholar]
  9. Skleničková K, Abbrent S, Halecký M, Kočí V, Beneš H. Biodegradability and ecotoxicity of polyurethane foams: A review. Critical Reviews in Environmental Science and Technology. 2022;52(2):157–202. [CrossRef] [Google Scholar]
  10. Gama N V., Ferreira A, Barros-Timmons A. Polyurethane foams: Past, present, and future. Materials. 2018;11(10). [Google Scholar]
  11. Klempner D, Sendijarevic V, Domeier L, Gupta C V, Harper JR, Herrington R, et al. Handbook of polymeric foams and foam technology. Choice Reviews Online. 2004;42(03):42-1564-42–1564. [Google Scholar]
  12. Stewart R. Automotive composites offer lighter solutions. Reinforced Plastics. 2010;54(2):22–8. [CrossRef] [Google Scholar]
  13. Lakes RS. Cellular solids. Vol. 22, Journal of Biomechanics. 1989. p. 397. [Google Scholar]
  14. House of Insulation Mechanical Data Sheet PU Sheet D50. :9687. [Google Scholar]
  15. Stewart R. New mould technologies and tooling materials promise advances for composites. Reinforced Plastics. 2010;54(3):30–6. [CrossRef] [Google Scholar]
  16. Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. 2nd ed. Cambridge University Press; 1997. (Cambridge Solid State Science Series). [CrossRef] [Google Scholar]
  17. King D, Tansey T. Alternative materials for rapid tooling. Journal of Materials Processing Technology. 2002;121(2–3):313–7. [CrossRef] [Google Scholar]
  18. Kiswanto G, Zariatin DL, Ko TJ. The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of Aluminum Alloy 1100 in micro-milling operation. Journal of Manufacturing Processes. 2014;16(4):435–50. [CrossRef] [Google Scholar]
  19. Byrne G, Dornfeld D, Denkena B. Advancing cutting technology. CIRP Annals - Manufacturing Technology. 2003;52(2):483–507. [CrossRef] [Google Scholar]
  20. Nele L, Caggiano A, Improta I. Machining of composite materials. Fiber Reinforced Composites: Constituents, Compatibility, Perspectives and Applications. 2021;83–111. [Google Scholar]
  21. Sheikh-Ahmad JY, Davim JP. Cutting and Machining of Polymer Composites. Wiley Encyclopedia of Composites. 2012;1–10. [Google Scholar]
  22. Polasik R, Szczutkowski M. Milling efficiency aspects during machining of 7075 aluminium alloy with reference to the surface geometrical structure. Engineering Mechanics 2018. 2018;569–72. [Google Scholar]
  23. Hafner R, Pušavec F, Čerče L, Kopač J. Influence of milling process on machined surface of porous polyurethane (PU) foam. Tehnicki vjesnik - Technical Gazette. 2016;23(4):1089–93. [Google Scholar]
  24. Hafner R, Grguraš D, Kramar D. Milling process optimization for the best surface coat adhesion of the rigid polyurethane foam. Journal of Polymer Engineering. 2018;38(10):995–1005. [CrossRef] [Google Scholar]
  25. Hsieh WH, Lu MC, Chiou SJ. Application of backpropagation neural network for spindle vibration-based tool wear monitoring in micro- milling. International Journal of Advanced Manufacturing Technology. 2012;61(1–4):53–61. [CrossRef] [Google Scholar]
  26. Filiz S, Ozdoganlar OB. A three-dimensional model for the dynamics of micro-endmills including bending, torsional and axial vibrations. Precision Engineering. 2011;35(1):24–37. [CrossRef] [Google Scholar]
  27. Ronald AW, Cormier RD. Machining and Metalworking Handbook. Library. 2006. 974 p. [Google Scholar]
  28. Gerling H. All About Machine Tools. New Age International (P) Limited; 2007. [Google Scholar]
  29. Costes JP, Larricq P. Towards high cutting speed in wood milling. Annals of Forest Science. 2002;59:857–65. [CrossRef] [EDP Sciences] [Google Scholar]
  30. Ali MY, Mohamed AR, Asfana B, Lutfi M, Fahmi MI. Investigation of vibration and surface roughness in micro milling of PMMA. Applied Mechanics and Materials. 2012;217–219:2187–93. [Google Scholar]
  31. Walsh RA. Handbook of Machining and Metalworking Calculations. 1st Editio. New York: McGraw-Hill Education; 2001. [Google Scholar]
  32. Yan X, Dong S, Li X, Zhao Z, Dong S, An L. Optimization of machining parameters for milling zirconia ceramics by polycrystalline diamond tool. Materials. 2022;15(1). [Google Scholar]
  33. Malak SFF, Anderson IA. Orthogonal cutting of polyurethane foam. International Journal of Mechanical Sciences. 2005;47(6):867–83. [CrossRef] [Google Scholar]
  34. Liu G, Zou B, Huang C, Wang X, Wang J, Liu Z. Tool damage and its effect on the machined surface roughness in high-speed face milling the 17-4PH stainless steel. International Journal of Advanced Manufacturing Technology. 2016;83(1–4):257–64. [CrossRef] [Google Scholar]
  35. Wang F ji, Yin J wei, Ma J wei, Jia Z yuan, Yang F, Niu B. Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates. International Journal of Advanced Manufacturing Technology. 2017;91(9–12):3107–20. [CrossRef] [Google Scholar]
  36. Geier N, Davim JP, Szalay T. Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing. 2019;125(February):105552. [CrossRef] [Google Scholar]
  37. Jamal Y. Sheikh-Ahmad. Machining of Polymer Composites. Machining of Polymer Composites. 2009. 1–321 p. [Google Scholar]
  38. Davim JP. Materials Forming and Machining: Research and Development. Materials Forming and Machining: Research and Development. 2015. 1– 185 p. [Google Scholar]
  39. König W, Wulf C, Graß P, Willerscheid H. Machining of Fibre Reinforced Plastics. CIRP Annals - Manufacturing Technology. 1985;34(2):537–48. [CrossRef] [Google Scholar]
  40. Novrialdy Y, K A, A Y, Prasetya F. PENGARUH VARIASI FEED RATE TERHADAP KEKASARAN PERMUKAAN POLYETHYLENE MENGUNAKAN MESIN CNC MIILING. Jurnal Vokasi Mekanika (VoMek). 2021; [Google Scholar]
  41. Übeyli M, Acir A, Serdar Karakaş M, Ögel B. Effect of feed rate on tool wear in milling of Al- 4%Cu/B4C p composite. Materials and Manufacturing Processes. 2008;23(8):865–70. [CrossRef] [Google Scholar]
  42. De Souza AF, Coelho RT. Experimental investigation of feed rate limitations on high speed milling aimed at industrial applications. International Journal of Advanced Manufacturing Technology. 2007;32(11–12):1104–14. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.