Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 02008
Number of page(s) 7
Section Carbon Emission Control and Waste Resource Utilization
DOI https://doi.org/10.1051/e3sconf/202452002008
Published online 03 May 2024
  1. Chen, Y.; Tong, H.; Chen, Q.; Du X.; Wang, S.; Pan, Y.; Dong, Y.; Ma, H. (2023) Chemical CorrosionWater-Confining Pressure Coupling Damage Constitutive Model of Rock Based on the SMP Strength Criterion. Materials, 16, 6234. http://doi.org/10.3390/ma16186234 [CrossRef] [PubMed] [Google Scholar]
  2. Chen, Q.; Chen, Y.; Xiao, P.; Du, X.; Pan, Y.; Azzam, R. (2023) Mechanical properties and damage constitutive model of sandstone after acid corrosion and high temperature treatments. International Journal of Mining Science and Technology, 33, 747–760. http://doi.org/10.1016/j.ijmst.2022.11.011 [CrossRef] [Google Scholar]
  3. Liu, Y.; Liu, W.; Wang, C. (2023) Mechanical properties and constitutive model of fractured red sandstone under acid corrosion. SN Applied Sciences, 5, 1–13. http://doi.org/10.1007/s42452-023-05415-7 [CrossRef] [Google Scholar]
  4. Xie, S.; Wan, W. (2020) Mechanical Damage to the Diorite Caused by Acid Corrosion. Geotechnical and Geological Engineering, 38, 3087–3094. http://doi.org/10.1007/s10706-020-01209-5 [CrossRef] [Google Scholar]
  5. Zhao, Z.; Xue, J.; Jin, J.; Tan, L.; Cai, R.; Xia, W. (2022) Damage Analysis of Chemically Corroded Sandstone Under Cyclic Impacts and Axial Static Pressure. Geotechnical and Geological Engineering, 40, 2581–2592. http://doi.org/10.1007/s10706-022-02047-3 [CrossRef] [Google Scholar]
  6. Xue, J.; Zhao, Z.; Dong, L. Jin, J.; Zhang, Y.; Tan, L.; Cai, R.; Zhang, Y. (2022) Effect of Chemical Corrosion and Axial Compression on the Dynamic Strength Degradation Characteristics of White Sandstone under Cyclic Impact. Minerals, 12, 429. http://doi.org/10.3390/min12040429 [CrossRef] [Google Scholar]
  7. Bieniawski, Z.T.; Bernede, M.J. (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 138–140. http://doi.org/10.1016/0148-9062(79)91451-7 [CrossRef] [Google Scholar]
  8. Bieniawski, Z.T.; Bernede, M.J. (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determination of the uniaxial compressive strength of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 137. http://doi.org/10.1016/0148-9062(79)91450-5 [CrossRef] [Google Scholar]
  9. Bieniawski, Z.T.; Hawkes, I. (1978) Suggested methods for determining tensile strength of rock materials - 1. suggested method for determining direct tensile strength. International Journal of Rock Mechanics and Mining Sciences, 15, 99–103. http://doi.org/10.1016/0148-9062(78)90003-7 [CrossRef] [Google Scholar]
  10. Sunnetci, M.O.; Ersoy, H. (2022) A new perspective based on overcoming sample heterogeneity for the estimation of thermal damage inflicted on volcanic rocks using non-destructive tests. Rock Mechanics and Rock Engineering, 56, 1–22. http://doi.org/10.1007/s00603-022-03065-6 [Google Scholar]
  11. Chen, W.; Wan, W.; Zhao, Y.; He, H.; Wu, Q.; Zhou, Y.; Xie, S. (2022) Mechanical damage evolution and mechanism of sandstone with prefabricated parallel double fissures under high-humidity condition. Bulletin of Engineering Geology & the Environment, 81, 1–15. http://doi.org/10.1007/s10064-022-02747-3 [CrossRef] [Google Scholar]
  12. Cui, K.; Liu, G.; Wu, G.; Zhu, P. (2019) Study on the characteristics and mechanisms of freeze-thaw damage of rock carrier of Helankou rock paintings under different conditions. Chinese Journal of Rock Mechanics and Engineering, 38, 1797–1808. http://doi.org/10.13722/j.cnki.jrme.2019.0054 [Google Scholar]
  13. Huang, Z.; Zhang, W.; Zhang, H.; Zhang, J.; Hu, Z. (2022) Damage characteristics and new constitutive model of sandstone under wet-dry cycles. Journal of Mountain Science, 19, 2111–2125. http://doi.org/10.1007/s11629-021-7239-8 [CrossRef] [Google Scholar]
  14. Borges, R.M.K.; Amorim, L.E.D.; Rios, F.J.; DosSantos, G.C.S.; Freitas, M.E.; De-Lima, T.A.F.; Santos, A.; Pedrosa, T.A. (2022) Melt-melt immiscibility and implications for the origin of Madeira albite-rich granite, Pitinga mine, Amazonas, Brazil: A melt inclusion study. Brazilian Journal of Geology, 51. http://doi.org/10.1590/2317-4889202120210011 [Google Scholar]
  15. Koca T.K. (2023) The Effect of Geometrical Features of Release Surfaces on the Stability of Tectonically Disturbed Deep Rock Slopes in an Albite Open Pit Mine. Sustainability, 15, 1425. http://doi.org/10.3390/su15021425 [CrossRef] [Google Scholar]
  16. Wang, P.; Tan, K.; Li, Y.; Xiao, W.; Liu, Z.; Tan, W.; Xu, Y. (2023) The adsorption of U(VI) by albite during acid in-situ leaching mining of uranium. Journal of Radioanalytical and Nuclear Chemistry, 331, 1–9. http://doi.org/10.1007/s10967-022-08254-9 [Google Scholar]
  17. Gulgonul, I.; Celik, M.S. (2018) Understanding the flotation separation of Na and K feldspars in the presence of KCl through ion exchange and ion adsorption (Article). Minerals Engineering, 129, 41–46. http://doi.org/10.1016/j.mineng.2018.08.038 [CrossRef] [Google Scholar]
  18. Schmitz, C.; Burt, D. (1990) The Black Pearl mine, Arizona; Wolframite veins and stockscheider pegmatite related to an albitic stock. Geological Society of America Special Papers, 246, 221–232. http://doi.org/10.1130/SPE246-p221 [CrossRef] [Google Scholar]
  19. Taylor, J.C. (1985) Technique and Performance of Powder Diffraction in Crystal Structure Studies. Australian Journal of Physics, 38, 519–522. http://doi.org/10.1071/PH850519 [CrossRef] [Google Scholar]
  20. Ortiz, A.L.; Cumbrera, F.L.; Sánchez-Bajo, F.; Guiberteau, F.; Caruso, R. (2000) Fundamental parameters approach in the Rietveld method: a study of the stability of results versus the accuracy of the instrumental profile. Journal of the European Ceramic Society, 20, 1845–1851. http://doi.org/10.1016/S0955-2219(00)00056-X [CrossRef] [Google Scholar]
  21. Dos-Santos, H.N.; Neumann, R.; Ávila, C.A. (2017) Mineral quantification with simultaneous refinement of Ca-Mg carbonates non-stoichiometry by X-Ray diffraction, Rietveld method (Article). Minerals, 7, 164. http://doi.org/10.3390/min7090164 [CrossRef] [Google Scholar]
  22. Sun, S.; Zhang, X.; Cui, J.; Liang, S. (2020) Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale, 12, 16657–16677. http://doi.org/10.1039/d0nr03637d [CrossRef] [PubMed] [Google Scholar]
  23. Ali, A.; Chiang, Y.; Santos, R.M. (2022) X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals, 12, 205. http://doi.org/10.3390/min12020205 [CrossRef] [Google Scholar]
  24. Kahle, M.; Kleber, M.; Jahn, R. (2002) Review of XRD-based quantitative analyses of clay minerals in soils: the suitability of mineral intensity factors. Geoderma, 109, 191–205. http://doi.org/10.1016/S0016-7061(02)00175-1 [CrossRef] [Google Scholar]
  25. Lou, W.; Zhang, D.; Bayless, R.C. (2020) Review of mineral recognition and its future. Applied Geochemistry, 122, 104727. http://doi.org/10.1016/j.apgeochem.2020.104727 [CrossRef] [Google Scholar]
  26. Li, Z.; Zhang, M.; Yang, Z.; Ding, Cong.; Liu Y.; Huang G. (2023) Application of FTIR and XRD in Coal Structural Analysis of Fault Tectonic. Spectroscopy and Spectral Analysis, 43, 657. http://doi.org/10.3964/j.issn.1000-0593(2023)02-0657-08 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.