Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 02019
Number of page(s) 7
Section Carbon Emission Control and Waste Resource Utilization
DOI https://doi.org/10.1051/e3sconf/202452002019
Published online 03 May 2024
  1. B. Xu, J. Wen, S. Dembele, et al. The effect of pressure boundary rupture rate on spontaneous ignition of pressurized hydrogen release[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 279–287. DOI: 10.10160.jlp.2008.07.007. [CrossRef] [Google Scholar]
  2. Rudy W., Dabkowski A., Teodorczyk A. Experimental and numerical study on surface ignition of hydrogen and hydrogen methane jets in air [J] International Journal of Hydrogen Energy, 2014, 39 (35): 20388–20395 [Google Scholar]
  3. K. Nanthagopal, R. Subbarao, T. Elango, etc Hydrogen enriched compressed natural gas (HCNG): A future fuel for internal combustion engines [J/OL] Thermal Science, 2011, 15 (4): 1145–1154 [CrossRef] [Google Scholar]
  4. S. Polovastov, V. Bocharnikov, A. Samiolova. Experimental investment of influence of metal additions on surface self-ignition of pulsed jet of hydrogen [J] International Journal of Hydrogen Energy, 2016, 41 (30): 13322–13328 [Google Scholar]
  5. Q. Zeng, Duan Q., Li P., et al. An experimental study of the effect of 2.5% metal addition on self-ignition and flame propagation during high pressure hydrogen release through a tube [J] International Journal of Hydrological Energy, 2020, 45 (4): 3381–3390 [CrossRef] [Google Scholar]
  6. P. Wolanski. Investigation into the Mechanism of the Diffusion Identification of a Combustible Gas Flowing into an Oxford Atmosphere [C]// Fourteenth Symposium (International) on Combustion, 1973. [Google Scholar]
  7. V. Golub, D. Baklanov, S. Golovastov, et al. Mechanisms of high pressure hydrography gas selfignition in tubes [J] Journal of loss prevention in the process industries, 2008, 21 (2): 185–198 [CrossRef] [Google Scholar]
  8. V. Golub, D.I. Baklanov, T.V. Bazhenova, et al. Shock induced ignition of hydrogen gas during accounting or technical opening of high pressure tanks [J] Journal of Loss Prevention in the Process Industries, 2007, 20 (4-6): 439–446. DOI: 10.1016/j.jlp.2007.03.014. [CrossRef] [Google Scholar]
  9. Q. Chen. Theoretical and Experimental Techniques of Shock Tube Flow [M], Anhui, China University of Science and Technology Press, 1979, 31–89. [Google Scholar]
  10. I.R. Hurle, The shock tube in high-temperature chemical physics[M]. Chapman and Hall, Ltd. 1963. [Google Scholar]
  11. Cammarota Di Benedetto Di Sarli F A V Salzano E. Explosion behavior of hydrogen-methane/air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2012, 25:443–447. DOI: 10.1016/j.jlp.2011.11.010. [CrossRef] [Google Scholar]
  12. R. Cheng, A.K. Oppenheim Autognition in metal hydrogen mixtures [J] Combustion and Flame, 1984, 58 (2): 125–139. DOI: 10.1016/0010-2180(84)90088-9. [CrossRef] [Google Scholar]
  13. M. Madia, G. Cicalese, L. Dalseno. Hydrogen, method, and one of their fuel blends combination: CFD analysis and numerical experimental comparisons of fixed and mobile applications [J/OL] Journal of Physics: Conference Series, 2023, 2648 (1): 012080 [CrossRef] [Google Scholar]
  14. M. Fairweather, M.P. Ormsby, C.G.W. Sheppard, et al. Turbulent burning rates of metal and metal - hydrogen mixtures [J] Combustion&Flame, 2009, 156 (4): 780–790. DOI: 10.1016/j.combustflame.2009.02.001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.