Open Access
Issue
E3S Web Conf.
Volume 520, 2024
4th International Conference on Environment Resources and Energy Engineering (ICEREE 2024)
Article Number 02029
Number of page(s) 7
Section Carbon Emission Control and Waste Resource Utilization
DOI https://doi.org/10.1051/e3sconf/202452002029
Published online 03 May 2024
  1. Roth G.A., Abate D., Abate K.H., et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017 [J]. The Lancet, 2018, 392(10159):1736–1788. [CrossRef] [Google Scholar]
  2. Guo Y.M., Gasparrini A., Li S.S., et al. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study [J]. PLoS Medicine, 2018, 15(7): e1002629. [CrossRef] [PubMed] [Google Scholar]
  3. Watts N., Amann M., Arnell N., et al. The 2019 report of The Lancet Countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate [J]. The Lancet, 2019, 394(10211): 1836–1878. [CrossRef] [Google Scholar]
  4. IEA. CO2 Emission from fuel combustion 2018 [R]. Paris: International Energy Agency, 2018. [Google Scholar]
  5. Wang Z.Y., Meng J., Guan D.B. Dynamic driving forces of India’s emissions from production and consumption perspectives [J]. Earth’s Future, 2020, 8(8): e2020EF001485. [Google Scholar]
  6. Su W.H., Wang Y.Y., Streimikiene D., et al. Carbon dioxide emission decomposition along the gradient of economic development: The case of energy sustainability in the G7 and Brazil, Russia, India, China and South Africa [J], Sustainable Development. 2020, 28(4): 657–669. [CrossRef] [Google Scholar]
  7. Yang J., Miao Y.M., Li Y.F., et al. Decomposition analysis of factors that drive the changes of major air pollutant emissions in China at a multi-regional level [J]. Sustainability, 2019, 11(24): 7113. [Google Scholar]
  8. Chang M., Zheng J., Inoue Y., et al. Comparative analysis on the socioeconomic drivers of industrial air pollutant emissions between Japan and China: Insights for the further abatement period based on the LMDI method [J]. Journal of Cleaner Production, 2018, 189: 240–250. [CrossRef] [Google Scholar]
  9. Wang X.L., Gao X.N., Shao Q.L., et al. Factor decomposition and decoupling analysis of air pollutant emissions in China’s iron and steel industry[J]. Environmental Science and Pollution Research, 2020, 27(13): 15267–15277. [CrossRef] [PubMed] [Google Scholar]
  10. Guo J., Xu Y.Z., Pu Z.N. Urbanization and its effects on industrial pollutant emissions: An empirical study of a Chinese case with the spatial panel model [J]. Sustainability, 2016, 8(8): 812. [CrossRef] [Google Scholar]
  11. IPCC. Global warming of 1.5C[R]. Geneva, Switzerland: IPCC, 2018. [Google Scholar]
  12. IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge: Cambridge University Press, 2022. [Google Scholar]
  13. UNEP. Global environment outlook-GEO-6: Healthy planet, healthy people [M]. Cambridge: Cambridge University Press, 2019. [Google Scholar]
  14. UNEP. Emissions gap report 2019 [M]. Nairobi: United Nations Environment Programme, 2019. [18] Ang B W. The LMDI approach to decomposition analysis: A practical guide [J]. Energy Policy, 2005, 33(7): 867–871. [CrossRef] [Google Scholar]
  15. Lin C., Qi J.C., Liang S., et al. Saving less in China facilitates global CO2 mitigation [J]. Nature Communications, 2020, 11(1): 1–12. [CrossRef] [PubMed] [Google Scholar]
  16. Ehlich P., Holden J. Impact of population growth[J]. Science, 1971, 171(3977): 1212–1217. [CrossRef] [PubMed] [Google Scholar]
  17. Commoner B. Making Peace with the Planet[M]. New York:New Press, 1992. [Google Scholar]
  18. Xu B., Luo L., Lin B. (2016). A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecological indicators, (63), 346–358. [CrossRef] [Google Scholar]
  19. Cramer J.C. Population growth and air quality in California[J]. Demography, 1998, 35(1):45–56. [CrossRef] [PubMed] [Google Scholar]
  20. Yu X., Chen H., Wang B., et al. Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks[J]. Applied Energy, 2018, 2121553-1562. [Google Scholar]
  21. Kaya Y. Impact of carbon dioxide emission on GNP growth:interpretation of proposed scenarios[R]. Paris: IPCC Energy and Industry Subgroup, 1989. [Google Scholar]
  22. Smith, S.J., Van Aardenne, J., Klimont, Z., et al. Anthropogenic sulfur dioxide emissions: 1850-2005[J]. Atmospheric chemistry and physics, 2011, 11(3): 1101–1116. [CrossRef] [Google Scholar]
  23. Zhang B., Chen G.Q. Methane emissions by Chinese economy: Inventory and embodiment analysis[J]. Energy Police, 2010, 38: 4304–4316 [CrossRef] [Google Scholar]
  24. Zhang L.X., Wang C.B., Yang Z.F., et al. Carbon emissions from energy combustion in rural China[J]. Procedia Environmental Sciences, 2010, 2:980–989. [CrossRef] [Google Scholar]
  25. David P. Angel, Samuel Attoh, David Kromm, et al. The drivers of greenhouse gas emissions: What do we learn from local case studies?[J]. Local Environment, 1998, 3(3): 263–277. [CrossRef] [Google Scholar]
  26. Geist, H., Lambin, E. Proximate causes and underlying driving forces of tropical deforestation[J]. BioScience, 2002, 52: 143–150. [CrossRef] [Google Scholar]
  27. Zaekhan Z., Nachrowi N.D., Lubis A.F., et al. Decomposition analysis of decoupling of manufacturing CO2 emissions in Indonesia [J]. International Journal of Business and Society, 2019, 20: 91–106. [Google Scholar]
  28. TAPIPO Towards a theory of decoupling degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy, 2005, 12(2):137–151 [CrossRef] [Google Scholar]
  29. Siyu C., Jingru L., Guangming S. Relationship Between Carbon Emissions and Economic Development of Industrial Parks Based on Decoupling Index]. [J]. Huan jing ke xue Huanjing kexue, 2023, 44(11): 6412–6420. [PubMed] [Google Scholar]
  30. Yisen Q., Jialing Z., Yizheng L., et al. Uncovering the roadmap of decoupling economic growth and CO2 emissions targeting energy-resource-emissionintensive industrial parks located nearby large river: Practices and implications from China[J]. Journal of Cleaner Production, 2023, 393. [Google Scholar]
  31. Rutger Hoekstra, Jeroen C.J.M., van den Bergh. Comparing structural decomposition analysis and index [J]. Energy Economics, 2003, 25(1): 39–64. [CrossRef] [Google Scholar]
  32. Jiang J.J., Ye B., Xie D.J., et al. Provincial-level carbon emission drivers and emission reduction strategies in China: Combining multi-layer LMDI decomposition with hierarchical clustering [J]. Journal of Cleaner Production, 2017, 169: 178–190. [CrossRef] [Google Scholar]
  33. Shao S., Yang L.L., Gan C.H., et al. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China) [J]. Renewable and Sustainable Energy Reviews, 2016, 55: 516–536. [CrossRef] [Google Scholar]
  34. Wang Q., Han X.Y., Li R.R. Does technical progress curb India’s carbon emissions? A novel approach of combining extended index decomposition analysis and production-theoretical decomposition analysis[J]. Journal of Environmental Management, 2022, 310:114720. [CrossRef] [PubMed] [Google Scholar]
  35. Wang J.D., Dong X.C., Dong K.Y. How digital industries affect China's carbon emissions? analysis of the direct and indirect structural effects[J]. Technology in Society, 2022, 68:101911. [CrossRef] [Google Scholar]
  36. Wang Z., Cui C., Peng S. How do urbanization and consumption patterns affect carbon emissions in China? A decomposition analysis [J]. Journal of Cleaner Production, 2019, 211:1201–1208. [CrossRef] [Google Scholar]
  37. Xu M., Li R., Crittenden J.C., et al. CO2 emissions embodied in China’s exports from 2002 to 2008: A structural decomposition analysis [J]. Energy Policy, 2011, 39(11): 7381–7388. [CrossRef] [Google Scholar]
  38. Su B., Ang B.W., Li Y.Z. Input-output and structural decomposition analysis of Singapore’s carbon emissions [J]. Energy Policy, 2017, 105: 484–492. [CrossRef] [Google Scholar]
  39. Wang H., Ang B.W., Su B. A multi-region structural decomposition analysis of global CO2 emission intensity [J]. Ecological Economics, 2017, 142: 163–176. [CrossRef] [Google Scholar]
  40. Ali Y., Ciaschini M., Socci C., et al. Identifying the sources of structural changes in CO2 emissions in Italy [J]. Econ Polit, 2019, 36(2): 509–526. [CrossRef] [Google Scholar]
  41. Guan D.B., Meng J., Reiner D.M., et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems[J]. Nature Geoscience, 2018, 11(8): 551–555. [CrossRef] [Google Scholar]
  42. Hoekstra R., Van Den Bergh J.C.J.M. Comparing structural decomposition analysis and index[J]. Energy Economics, 2003, 25(1): 39–64. [CrossRef] [Google Scholar]
  43. Wu Y., Zhu Q., Zhong L., et al. Energy consumption in the transportation sectors in China and the United States: A longitudinal comparative study[J]. Structural Change and Economic Dynamics, 2019, 51: 349–360. [CrossRef] [Google Scholar]
  44. Li H., Lin J., Zhao Y., et al. Identifying the driving factors of energy-water nexus in Beijing from both economy- and sector-wide perspectives[J]. Journal of Cleaner Production, 2019, 235: 1450–1464. [CrossRef] [Google Scholar]
  45. Akrofi B., Ackah I., Sakyi D. Analysis of the drivers of Ghanas energy demand change using the Laspeyres index method of decomposition: Q-effect, I-effect and S-effect[J]. OPEC Energy Review, 2018, 42(3): 262–276. [CrossRef] [Google Scholar]
  46. Maqsood A., Burney S.M.A. Standard errors for the Laspeyres index number with autocorrelated error models[J]. Communications in Statistics - Theory and Methods, 2017, 46(21): 10607–10616. [CrossRef] [Google Scholar]
  47. Boyd, G., McDonald, J.F., Ross, M., et al. Separating the changing composition of US manufacturing production from energy efficiency improvements: a Divisia index approach [J]. Energy Journal, 1987, 8 (2): 77–96. [CrossRef] [Google Scholar]
  48. Meng J., Mi Z.F., Guan D.B., et al. The rise of South-South trade and its effect on global CO2 emissions[J]. Nature Communications, 2018, 9(1): 1871. [CrossRef] [PubMed] [Google Scholar]
  49. Guan D.B., Meng J., Reiner D.M., et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems [J]. Nature Geoscience, 2018, 11(8): 551–555. [CrossRef] [Google Scholar]
  50. Xie P.J., Gao S.S., Sun F.H. An analysis of the decoupling relationship between CO2 emission in power industry and GDP in China based on LMDI method [J]. Journal of Cleaner Production, 2019, 211: 598–606. [CrossRef] [Google Scholar]
  51. Zhou J.G., Yu X.C., Guang F.T., et al. Analyzing and predicting CO2 Emissions in China based on the LMDI and GA-SVM model [J]. Polish Journal of Environmental Studies, 2018, 27(2): 927–938. [CrossRef] [Google Scholar]
  52. Zhao M., Tan L.R., Zhang W.G., et al. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method [J]. Energy, 2010, 35(6): 2505–2510. [CrossRef] [Google Scholar]
  53. Dong F., Gao X.Q., Li J.Y., et al. Drivers of China’s industrial carbon emissionsEvidence from joint PDA and LMDI Approaches [J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2712. [CrossRef] [PubMed] [Google Scholar]
  54. Yang J., Cai W., Ma M.D., et al. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods [J]. Science of the Total Environment, 2020, 711:134569. [CrossRef] [Google Scholar]
  55. Ortega-Ruiz G., Mena-Nieto A., García-Ramos J.E. Is India on the right pathway to reduce CO2 emissions? Decomposing an enlarged Kaya identity using the LMDI method for the period 1990-2016 [J]. Science of the Total Environment, 2020, 737:139638. [CrossRef] [Google Scholar]
  56. Guan D.B., Meng J., Reiner D.M., et al. Structural decline in China’s CO2 emissions through transitions in industry and energy systems [J]. Nature Geoscience, 2018, 11(8): 551–555. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.