Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01023
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202452201023
Published online 07 May 2024
  1. Ruiz, L., Torres, M., Gómez, A., Díaz, S., González, J. M., & Cavas, F. (2020). Detection and classification of aircraft fixation elements during manufacturing processes using a convolutional neural network. Applied Sciences, 10(19), 6856 [CrossRef] [Google Scholar]
  2. Hassaballah, M., Abdelmgeid, A. A., & Alshazly, H. A. (2016). Image features detection, description and matching. Image Feature Detectors and Descriptors: Foundations and Applications, 11-45 [CrossRef] [Google Scholar]
  3. Li P.L., Yang Z., Zhou W.L. et al. An automatic sorting system for sorting metal cylindrical workpiece based on machine vision and PLC technology [C] //2017 2nd International Conference on Robotics &Automation Engineering. Shanghai, 2017, 446-450 [Google Scholar]
  4. Mittal, M., Verma, A., Kaur, I., Kaur, B., Sharma, M., Goyal, L. M., … & Kim, T. H. An Efficient Edge Detection Approach to Provide Better Edge Connectivity for Image Analysis [Google Scholar]
  5. Ke X., Weng Z. Workpieces sorting system based on industrial robot of machine vision [ C] / / 2016 3rd International Conference on Systems &Informatics. Shanghai, 2016, 422-426 [Google Scholar]
  6. Krause, J., Gebru, T., Deng, J., Li, L. J., & Fei-Fei, L. (2014, August). Learning features and parts for fine-grained recognition. in 2014 22nd International conference on pattern recognition (pp. 26-33). IEEE [CrossRef] [Google Scholar]
  7. Merino Bermejo, I., Azpiazu Lozano, J., Remazeilles, A., & Sierra Araujo, B. (2020). Histogram-Based Descriptor Subset Selection for Visual Recognition of Industrial Parts [Google Scholar]
  8. Zheng, Z.H., et al. (2018), “Industrial part localization and grasping using a robotic arm guided by 2D monocular vision”, Industrial Robot: An International Journal, Vol. No. 6, pp. 794-804 [CrossRef] [Google Scholar]
  9. Hitomi, E. E., Silva, J. V., & Ruppert, G. C. (2015). 3D scanning using RGBD imaging devices: a survey. Developments in Medical Image Processing and Computational Vision, 379-395 [CrossRef] [Google Scholar]
  10. Benbarrad, T., Salhaoui, M., Kenitar, S. B., & Arioua, M. (2021). Intelligent machine vision model for defective product inspection based on machine learning. Journal of Sensor and Actuator Networks, 10(1), 7 [CrossRef] [Google Scholar]
  11. Frustaci, F., Perri, S., Cocorullo, G., & Corsonello, P. (2020). An embedded machine vision system for an in-line quality check of assembly processes. Procedia Manufacturing, 42, 211-218 [CrossRef] [Google Scholar]
  12. Chen, J. (2021, December). Image Edge Detection Algorithm of Machined Parts Based on Mathematical Morphology. In 2021 IEEE International Conference on Industrial Application of Artificial Intelligence (IAAI) (pp. 275-280). IEEE [Google Scholar]
  13. Liu, J. J., Hou, Q., & Cheng, M. M. (2020). Dynamic feature integration for simultaneous detection of salient object, edge, and skeleton. IEEE Transactions on Image Processing, 29, 8652-8667 [CrossRef] [Google Scholar]
  14. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in CVPR, 2017 [Google Scholar]
  15. Shu, X., Zhang, L., Wang, Z., Wang, L., & Yi, Z. (2023). Fine-grained recognition: multi-granularity labels and category similarity matrix. Knowledge-Based Systems, 273, 110599 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.