Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01028
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202452201028
Published online 07 May 2024
  1. Ján Cvengroš, Štefan Pollák, Micov M., et al. Film wiping in the molecular evaporator[J]. Chemical Engineering Journal, 2001, 81 (1): 9-14. DOI: 10.1016/S1385-8947(00)00195-9. [CrossRef] [Google Scholar]
  2. Werbos P. J. Using ADP to Understand and Replicate Brain Intelligence: the Next Level Design[J]. IEEE, 2007. DOI: 10.1109/ADPRL.2007.368190. [Google Scholar]
  3. Ackermann J., Utkin V. Sliding mode control design based on ackermann’s formula[J]. IEEE Transactions on Automatic Control, 1998, 43(2):234–237. [CrossRef] [Google Scholar]
  4. Liu D., Xu Y., Wei Q., et al. Residential Energy Scheduling for Variable Weather Solar Energy Based on Adaptive Dynamic Programming[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5 (1): 36-46. DOI: 10.1109/JAS.2017.7510739. [CrossRef] [Google Scholar]
  5. Li Y. D., Huang Zh. J., Wang S., et al. Improved ADHDP Method for Ship Course Adaptive Control [J]. Journal of Hubei University for Nationalities: Natural Science Edition, 2018, 36(2):6. DOI: 10.13501/j.cnki.42-1569/n.2018.06.015. [Google Scholar]
  6. Wang X. F., Yang J., Chen J. J., et al. A Control Method for Superconducting Magnetic Energy Storage Device [J]. Journal of Wuhan University: Engineering Edition, 2017, 50(2):8. DOI:CNKI:SUN:WSDD.0.2017-02-010. [Google Scholar]
  7. Jin N., Liu D., Huang T., et al. Discrete-time adaptive dynamic programming using wavelet basis function neural networks[C]//IEEE International Symposium on Approximate Dynamic Programming & Reinforcement Learning. IEEE, 2015. DOI: 10.1109/ADPRL.2007.368180. [Google Scholar]
  8. Prokhorov D. V., Santiago R. A., Ii D. C. W. Adaptive critic designs: A case study for neurocontrol[J]. Neural Networks the Official Journal of the International Neural Network Society, 1995, 8 (9): 1367-1372. DOI: 10.1016/0893-6080(95)00042-9. [CrossRef] [Google Scholar]
  9. Deb A. K., Jayadeva, Gopal M., et al. SVM-Based Tree-Type Neural Networks as a Critic in Adaptive Critic Designs for Control[J]. IEEE Transactions on Neural Networks, 2007, 18 (4): 1016-1030. DOI: 10.1109/TNN.2007.899255. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.