Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01029
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202452201029
Published online 07 May 2024
  1. Yanting Z., Salvatore V., Eileen M., et al. Global variations in lung cancer incidence by histological subtype in 2020: a population-based study. [J]. The Lancet. Oncology, 2023, 24(11):1206–1218. [CrossRef] [PubMed] [Google Scholar]
  2. Li Xiang, Gao Shen. Trends in incidence, morbidity and mortality of lung cancer in Chinese residents from 1990 to 2019 [J]. Chronic disease prevention and control in China, 2021, 29 (11): 821-826. DOI: 10.16386/j.cjpccd.issn.1004-6194.2021.11.005 [Google Scholar]
  3. Hepp R. Gene Profiling in Recurrent Small Cell Lung Cancer [J]. Oncology Times, 2019, 41(11):28–29. [CrossRef] [Google Scholar]
  4. Yuhong J., Jun H., Xiaobo W., et al. Identification and validation of core genes in tumor- educated platelets for human gastrointestinal tumor diagnosis using network-based transcriptomic analysis. [J]. Platelets, 2023, 34(1):2212071–2212071. [CrossRef] [PubMed] [Google Scholar]
  5. Ferreira G. L. C., Nunes C. S., Barbosa L. L. D., et al. 72. Comprehensive genomic profiling in the diagnosis of Central Nervous System tumors [J]. Cancer Genetics, 2023, 278-279 (S1): [Google Scholar]
  6. Doudou G., Weihua X. Fuzzy-based concept-cognitive learning: An investigation of novel approach to tumor diagnosis analysis [J]. Information Sciences, 2023, 639 [Google Scholar]
  7. Liu Dongqi, Dou Fulin, Yang Xiaodong. Bioinformatics study of key genes in lung adenocarcinoma [J]. Chinese experimental diagnostics, 2020, 24(04):580–586. [Google Scholar]
  8. Shaima B., Gwénaël T. L., Riccardo B. D., et al. Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine. [J]. BMC bioinformatics, 2023, 24(1):96–96. [CrossRef] [PubMed] [Google Scholar]
  9. Wang Jinsong, Wei Jiayan, Peng Min. Interpretation and implications of the US cancer Statistics Report in 2023 and the latest global cancer statistics [J]. Journal of Practical Oncology, 2023, 38 (06): 523-527. DOI: 10.13267/j.cnki.syzlzz.2023.083 [Google Scholar]
  10. H C C., A T M., D K R., et al. Design considerations and analytical framework for reliably identifying a beneficial individualized treatment rule. [J]. Contemporary clinical trials, 2022, 123 106951-106951. [CrossRef] [PubMed] [Google Scholar]
  11. Rémy J., Dzenis K., Florent C., et al. Prognosis of lasso-like penalized Cox models with tumor profiling improves prediction over clinical data alone and benefits from bi- dimensional pre-screening [J]. BMC Cancer, 2022, 22(1):1045–1045. [CrossRef] [PubMed] [Google Scholar]
  12. Carsten N., Gyda S. A., Astrid D., et al. Sex Differences in Presentation, Treatment, and Survival in Patients Receiving Palliative (Chemo)Radiotherapy for Non-Small Cell Lung Cancer. [J]. Anticancer research, 2024, 44(1):301–305. [CrossRef] [PubMed] [Google Scholar]
  13. A A A R, Sun, Y., Jui K., et al. Sex disparities in lung cancer survival rates based on screening status. [J]. Lung cancer (Amsterdam, Netherlands), 2022, 171 115-120. [CrossRef] [PubMed] [Google Scholar]
  14. Wen C., Xuewen H., Ying H., et al. A deep learning-and CT image-based prognostic model for the prediction of survival in non-small cell lung cancer. [J]. Medical physics, 2021, 48(12):7946–7958. [CrossRef] [PubMed] [Google Scholar]
  15. Shulin C., Hanqing H., Yijun L., et al. A multi-parametric prognostic model based on clinical features and serological markers predicts overall survival in non-small cell lung cancer patients with chronic hepatitis B viral infection [J]. Cancer Cell International, 2020, 20(1):555–555. [CrossRef] [PubMed] [Google Scholar]
  16. Seungwon O., SaeRyung K., InJae O., et al. Correction: Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients. [J]. BMC bioinformatics, 2023, 23 (S9): 573-573. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.