Open Access
Issue
E3S Web Conf.
Volume 522, 2024
2023 9th International Symposium on Vehicle Emission Supervision and Environment Protection (VESEP2023)
Article Number 01043
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202452201043
Published online 07 May 2024
  1. H.-C. Shih, A survey of content-aware video analysis for sports, IEEE Transactions on Circuits and Systems for Video Technology, 28.5 (2017) 1212–1231. [Google Scholar]
  2. R. Li, S. Yang, D.A. Ross, et al. Learn to dance with aist++: Music conditioned 3d dance generation. arXiv preprint arXiv:2101.08779, 2021, 2(3). [Google Scholar]
  3. Song, Yale, David Demirdjian, and Randall Davis, Continuous body and hand gesture recognition for natural human-computer interaction, ACM Transactions on Interactive Intelligent Systems, 2.1 (2012) 1–28. [CrossRef] [Google Scholar]
  4. H. Qiu, C. Wang, J. Wang, et al. Cross view fusion for 3d human pose estimation, Proceedings of the IEEE/CVF International Conference on Computer Vision. (2019) 4342–4351. [Google Scholar]
  5. M. Kocabas, S. Karagoz, E. Akbas, Self-supervised learning of 3d human pose using multi-view geometry, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019) 1077–1086. [Google Scholar]
  6. R. Xie, C. Wang, Y. Wang, Metafuse: A pre-trained fusion model for human pose estimation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2020) 13686–13695. [Google Scholar]
  7. K. Gong, J. Zhang, J. Feng, Poseaug: A differentiable pose augmentation framework for 3d human pose estimation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021) 8575–8584. [Google Scholar]
  8. S. Wang, K. Hang, Z.H. Chen, et al. Survey on 3D Human Pose Estimation of Deep Learning, Journal of Frontiers of Computer Science and Technology, 17.1 (2023):74–87. [Google Scholar]
  9. K. Sun, B. Xiao, D. Liu, et al. Deep high-resolution representation learning for human pose estimation, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019) 5693–5703. [Google Scholar]
  10. Y. Peng, J. Guo, C.H. Yu, et al. Calibration method for high precision camera based on plane transformation, Journal of Beijing University of Aeronautics and Astronautics, 48.7 (2022):1297–1303. [Google Scholar]
  11. J. Dong, W. Jiang, Q. Huang, et al. Fast and robust multi-person 3d pose estimation from multiple views, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2019) 7792–7801. [Google Scholar]
  12. H. Tu, C. Wang, W. Zeng. Voxelpose: Towards multi-camera 3d human pose estimation in wild environment, Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I 16. Springer International Publishing, (2020) 197–212. [Google Scholar]
  13. S. Wu, S. Jin, W. Liu, et al. Graph-based 3d multi-person pose estimation using multiview images, Proceedings of the- IEEE/CVF International Conference on Computer Vision, (2021) 11148–11157. [Google Scholar]
  14. J. Lin, G. H. Lee, Multi-view multi-person 3d pose estimation with plane sweep stereo, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021) 11886–11895. [Google Scholar]
  15. H. Chu, J. Lee, Y. Lee, et al. Part-aware measurement for robust multi-view multihuman 3d pose estimation and tracking, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021) 1472–1481. [Google Scholar]
  16. H. Ye, W. Zhu, C. Wang, et al. Faster VoxelPose: Real-time 3D Human Pose Estimation by Orthographic Projection, Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part VI. Cham: Springer Nature Switzerland, (2022) 142–159. [CrossRef] [Google Scholar]
  17. A. Newell, K. Yang, J. Deng, Stacked hourglass networks for human pose estimation, Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14. Springer International Publishing, (2016) 483–499. [CrossRef] [Google Scholar]
  18. V. Belagiannis, S. Amin, M. Andriluka, et al. 3d pictorial structures revisited: Multiple human pose estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38.10 (2015) 1929–1942. [Google Scholar]
  19. H. Joo, H. Liu, L. Tan, et al. Panoptic studio: A massively multiview system for social motion capture, Proceedings of the IEEE International Conference on Computer Vision, (2015) 3334–3342. [Google Scholar]
  20. S. Ershadi-Nasab, E. Noury, S. Kasaei, et al. Multiple human 3d pose estimation from multiview images. Multimedia Tools and Applications, 77 (2018) 15573–15601. [CrossRef] [Google Scholar]
  21. T. Wang, J. Zhang, Y. Cai, S. Yan, et al. Direct multi-view multi-person 3d pose estimation[J]. Advances in Neural Information Processing Systems, 34 (2021) 13153–13164. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.