Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01002
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202452601002
Published online 20 May 2024
  1. Krzemie, A., Suarez, A.S., Riesgo, P.F., Zimmermann, K., & Gonz, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, (139), 1044–1056. https://doi.org/10.1016/j.jclepro.2016.08.149 [CrossRef] [Google Scholar]
  2. Mining and the green energy transition: Review of international development challenges and opportunities. (2021). Burlington, Vermont, USA: Tetra Tech – United States Agency for International Development, 126 p. [Google Scholar]
  3. Kovacs, I., Simion, S., Irimia, A., Ligia, I., & Florea, G. (2021). The social impact of mine closure in the Jiu Valley. E3S Web of Conferences, (239), 00004. https://doi.org/10.1051/e3sconf/202123900004 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Cole, M.J., Mthenjane, M., & van Zyl, A.T. (2023). Assessing coal mine closures and mining community profiles for the ‘just transition’ in South Africa. The Journal of the Southern African Institute of Mining and Metallurgy, (123), 329–341. http://dx.doi.org/10.17159/2411-9717/2689/2023 [CrossRef] [Google Scholar]
  5. Chugh, Y.P., Schladweiler, B.K., & Skilbred, C. (2023). Sustainable and responsible mining through sound mine closure. International Journal of Coal Science and Technology, 10(14). https://doi.org/10.1007/s40789-023-00572-x [CrossRef] [Google Scholar]
  6. Cabana, E., Falshtynskyi, V., Saik, P., Lozynskyi, V., & Dychkovskyi, R. (2018). A concept to use energy of air flows of technogenic area of mining enterprises. E3S Web of Conferences, (60), 00004. https://doi.org/10.1051/e3sconf/20186000004 [CrossRef] [EDP Sciences] [Google Scholar]
  7. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. https://doi.org/10.1051/e3sconf/201912301010 [CrossRef] [EDP Sciences] [Google Scholar]
  8. Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M., & Kowol, D. (2021). Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna – Energy Policy Journal, 24(3), 43–60. https://doi.org/10.33223/epj/141867 [CrossRef] [Google Scholar]
  9. Niemann A., Balmes J.P., Schreiber U., Wagner H.J., & Friedrich T. (2018). Proposed underground pumped hydro storage plant at Prosper-Haniel colliery in Bottrop – stay of play and prospects. Mining Reports Glückauf, 154(3), 214–223. [Google Scholar]
  10. Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B., & Smolinski, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13(4), 923. https://doi.org/10.3390/en13040923 [CrossRef] [Google Scholar]
  11. Timoshuk, V., Tishkov, V., Inkin, O., & Sherstiuk, E. (2012). Influence of coal layers gasification on bearing rocks. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 109–113. [Google Scholar]
  12. Lewińska, P., & Dyczko, A. (2016). Thermal digital terrain model of a coal spoil tip – a way of improving monitoring and early diagnostics of potential spontaneous combustion areas. Journal of Ecological Engineering, 17(4), 170–179. https://doi.org/10.12911/22998993/64605 [CrossRef] [Google Scholar]
  13. Sadovenko, I.A., & Inkin, A.V. (2018). Method for stimulating underground coal gasification. Journal of Mining Science, 54(3), 514–521. http://dx.doi.org/10.1134/S1062739118033941 [CrossRef] [Google Scholar]
  14. Veld, P., Roijen, E.J.A.E., Bojadgieva, K., Benderev, A., & Hristov, V. (2008). Potential use of geothermal energy from abandoned coal mines (Remining-Lowex project). In International Multidisciplinary Scientific GeoConferences (pp. 319–326). Sofia, Bulgaria. [Google Scholar]
  15. Karu, V., Robam, K., & Valgma, I. (2012). Potential usage of underground minewater in heat pumps. Estonian Geographical Society, 1–20. [Google Scholar]
  16. Gillespie, M.R., Crane, E.J., & Barron, H.F. (2013). Deep geothermal energy potential in Scotland British Geological Survey Geology and Landscape. Scotland Programme. Commissioned Report Cr/12/131. 2013. Keyworth, England: Nottingham British Geological Survey, 129 p. [Google Scholar]
  17. Verhoeven, R., Willems, E., Harcouët-Menou, V., Boever, E., Hiddes, L., Veld, P., & Demollin, E. (2014). Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Procedia, (46), 58–67. http://doi.org/10.1016/j.egypro.2014.01.158 [CrossRef] [Google Scholar]
  18. Ramos, E., Breede, K., & Falcone, G. (2015). Geothermal heat recovery from abandoned mines: a systematic review of projects implemented worldwide and a methodology for screening new projects. Environmental Earth Sciences, (73), 6783–6795. https://doi.org/10.1007/s12665-015-4285-y [CrossRef] [Google Scholar]
  19. Loredo, C., Roqueñí, N., & Ordóñez, A. (2016). Modelling flow and heat transfer in flooded mines for geothermal energy use: A review. International Journal of Coal Geology, (164), 115–122. https://doi.org/10.1016/j.coal.2016.04.013 [CrossRef] [Google Scholar]
  20. Adams, C., Monaghan, A., & Gluyas, J. (2019). Mining for heat. Geoscientist, (29), 10–15. https://doi.org/10.1144/geosci2019-021 [Google Scholar]
  21. Banks, D., Athresh, A., Al-Habaibeh, A., & Burnside, N. (2019). Water from abandoned mines as a heat source: practical experiences of openand closed-loop strategies, United Kingdom. Sustainable Water Resources Management, (5), 29–50. https://doi.org/10.1007/s40899-017-0094-7 [CrossRef] [Google Scholar]
  22. Rudakov, D., & Inkin, O. (2019). An assessment of technical and economic feasibility to install geothermal well systems across Ukraine. Geothermal Energy, 7(17). https://doi.org/10.1186/s40517-019-0134-7 [CrossRef] [Google Scholar]
  23. Bundesverband Geothermie. (2024). Bochum Werne – Geothermieanlage. Retrieved from https://www.geothermie.de/bibliothek/lexikon-der-geothermie/b/bochum-werne-geothermieanlage.html [Google Scholar]
  24. Schiffer, R., Möllerherm, S., & Wohnlich S. (2020). Energiebergbau – Umund Nachnutzung bergbaulicher Infrastruktur durch eine energetische Nutzung des Grubenwassers – Chance oder Fiktion? Erdöl Erdgas Kohle, 136(4), 34–37. [Google Scholar]
  25. Energeticon & Ingenieurbüro Heitfeld-Schetelig GmbH. (2019). Extraction of geothermal energy from a mine shaft located in the hard coal mining district of Aachen, Germany. Sustainable Heating. Brussels. Ingenieurbüro Heitfeld-Schetelig GmbH. Retrieved from https://energy.ec.europa.eu/system/files/2019-04/8.5_schetelig_sustainable_heating_0.pdf [Google Scholar]
  26. Bockelmann, F., & Fisch, M. (2019). It works – long-term performance measurement and optimization of six ground source heat pump systems in Germany. Energies, 12(24), 4691. https://doi.org/10.3390/en12244691 [CrossRef] [Google Scholar]
  27. Liu, H., Zhang, Y., & Javed, S. (2020). Long-term performance measurement and analysis of a small-scale ground source heat pump system. Energies, (17), 4527. https://doi.org/10.3390/en13174527 [CrossRef] [Google Scholar]
  28. Walls, D., Banks, D., Boyce, A., & Burnside, N. (2021). A Review of the Performance of Minewater Heating and Cooling Systems. Energies, 14(19), 6215. https://doi.org/10.3390/en14196215 [CrossRef] [Google Scholar]
  29. Melchers C., Westermann, S, & Reker, B. (2019). Evaluierung von Grubenwasser-anstiegsprozessen. Im Ruhrgebiet, Saarland, in Ibbenbüren sowie weiteren deutschen Steinkohlenrevieren und dem angrenzenden europäischen Ausland: Projektbericht. Bochum: Bergbau-Museum Bochum, 129 p. [Google Scholar]
  30. Stemke, M. & Wieber, G. (2022). Closure of German hard coal mines: Effects and legal aspects of mine flooding. Mine Water Environ, (41), 280–291. https://doi.org/10.1007/s10230-021-00842-7 [CrossRef] [Google Scholar]
  31. LANUV NRW (2018). Potenzialstudie warmes Grubenwasser. Fachbericht 90. Retrieved from https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/LANUV-Fachbericht_90_web.pdf [Google Scholar]
  32. Ebel, T., Oppelt, L., Wunderlich, T., Grab, T., & Fieback T. (2023). Development of an improved model to investigate heating potentials in abandoned mines utilising mine water. In IMWA 2023“The Future”, 154–158. [Google Scholar]
  33. Empfehlungen Oberflächennahe Geothermie: Planung, Bau, Betrieb und Überwachung – EA Geothermie. (2015). Deutsche Gesellschaft für Geotechnik, Deutsche Gesellschaft für Geowissen, 336 p. [Google Scholar]
  34. Rudakov, D., & Inkin, O. (2022). Evaluation of vertical closed loop system performance by modeling heat transfer in geothermal probes. Geothermics, (106), 102567. https://doi.org/10.1016/j.geothermics.2022.102567 [CrossRef] [Google Scholar]
  35. Hahn, F., Bussmann, G., Jagert, F., Ignacy, R., Bracke, R., & Seidel, T. (2018). Reutilization of mine water as a heat storage medium in abandoned mines. In 11th ICARD. IMWA. MWD Conference – “Risk to Opportunity”, 1057–1062. [Google Scholar]
  36. Eckart, M., Kories, H., Rengers, R., & Unland, W. (2004). Application of a numerical model to facilitate mine water management in large coal fields in Germany. Mine Water 2004 – Process. Policy and progress. Newcastle upon Tyne, (2), 209–218. [Google Scholar]
  37. DMT. (2011). BoxModel Concept: ReacFlow3D. Modelling of the flow of mine water and groundwater, mass and heat transport. Program description. Essen, Germany, 34 p. [Google Scholar]
  38. Langevin, C.D., Hughes, J. D., Banta, E.R., Niswonger, R.G., Panday, S., & Provost, A.M. (2017). Documentation for the MODFLOW 6 Groundwater Flow Model. Book 6. Techniques and Methods, 197 p. https://doi.org/10.3133/tm6a55 [Google Scholar]
  39. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko-geološko-naftni zbornik, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5 [CrossRef] [Google Scholar]
  40. Baier, J., Polák, M., Šindelář, M., & Uhlík J. (2011) Numerical modeling as a basic tool for evaluation of using mine water as a heat source. WIT Transactions on Ecology and the Environment, (143), 73–84. https://doi.org/10.2495/ESUS110071 [CrossRef] [Google Scholar]
  41. Rudakov, D., & Westermann, S. (2021). Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany. Mining mineral deposits, 15(3), 22–30. https://doi.org/10.33271/mining15.03.022 [CrossRef] [Google Scholar]
  42. Mannke, K., Hahn, F., Verhoeven, R., & Klein, S. (2024). GIS based analysis of heat demand and subsurface potential of abandoned mine infrastructure in the Ruhr region. In WVTF Symposium and 15th Int. IMWA Congress, 401–406. [Google Scholar]
  43. Hensel, P., Kugel, J., Terwelp, T., & Tuschmann, J. (2020). Long-term management of mine water operations in the German coalfields – an interim evaluation of the findings based on operating plans and hydrological permits. Mining Report Glückauf, 156(2), 97–105. [Google Scholar]
  44. Mineralienatlas – Fossilienatlas. (2024). Available online https://www.mineralienatlas.de [Google Scholar]
  45. Tran, T.Q., Banning, A., Wisotzky, F., & Wohnlich, S. (2020). Mine water hydrogeochemistry of abandoned coal mines in the outcropped Carboniferous formations, Ruhr Area, Germany. Environmental Earth Sciences, 79(4). https://doi.org/10.1007/s12665-020-8821-z [CrossRef] [Google Scholar]
  46. Baltes, B. (1998). Entwicklung und Anwendung analytischer Methoden zur Eig-nungsuntersuchung der Verbringung bergbaufremder Rückstände in dauerhaft offene Grubenräume im Festgestein. – Abschlussbericht, Fachband 3, Hydaulische Daten und Stofftransport, GRS-140/3, Köln. [Google Scholar]
  47. Geologischer Dienst NRW Report 2018/1. (2018). Krefeld. 35 p. [Google Scholar]
  48. Wolkersdorfer, C. (2008). Water management at abandoned flooded underground mines: Fundamentals. Tracer tests. Modelling. Water treatment. Springer, 485 p. [Google Scholar]
  49. Rudakov, D., Inkin, O., Dereviahina, N., & Sotskov, V. (2020). Effectiveness evaluation for geothermal heat recovery in closed mines of Donbas. E3S Web of Conferences, (201), 01008. https://doi.org/10.1051/e3sconf/202020101008 [CrossRef] [EDP Sciences] [Google Scholar]
  50. Rudakov, D., & Inkin, O. (2023). An approach for ranking abandoned mines by the efficient use of their geothermal potential. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 11–18. https://doi.org/10.33271/nvngu/20232/011 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.