Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01003
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202452601003
Published online 20 May 2024
  1. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  2. Dyczko, A. (2023). The geological modelling of deposits, production designing and scheduling in the JSW SA Mining Group. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), 35–62. https://doi.org/10.24425/gsm.2023.144628 [Google Scholar]
  3. Kopacz, M., Kulpa, J., Galica, D., & Olczak, P. (2020). The influence of variability models for selected geological parameters on the resource base and economic efficiency measures Example of coking coal deposit. Resources Policy, (68), 101711. https://doi.org/10.1016/j.resourpol.2020.101711 [CrossRef] [Google Scholar]
  4. Sobczyk, E.J. Sokołowski, A., Kopacz, M., Fijorek, K., & Denkowska, (2020). The analysis of dependence of the level of operational costs and production outputs upon geological and mining conditions in selected hard coal mines in Poland. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 36(3), 75–96. https://doi.org/10.24425/gsm.2020.133932 [Google Scholar]
  5. Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, 12(7), 278. https://doi.org/10.3390/ijgi12070278 [CrossRef] [Google Scholar]
  6. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  7. Sosnowski, P., & Jelonek, I. (2022) Facies development of coal seams in the Knurów deposit (Upper Silesia, Poland). International Journal of Coal Geology, (261), 104073. https://doi.org/10.1016/j.coal.2022.104073 [CrossRef] [Google Scholar]
  8. PN-93/G-04564 Węgiel kamienny. Analiza petrograficzna. Oznaczanie zawartości mikrolitotypów, karbominerytu i skały płonej. [Google Scholar]
  9. Díez, M. A., Alvarez, R., & Barriocanal, C. (2002). Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. International Journal of Coal Geology, 50(1-4), 389–412. https://doi.org/10.1016/s0166-5162(02)00123-4 [CrossRef] [Google Scholar]
  10. Jelonek, I., Poniewiera, M., & Jelonek, Z. 2017. Modelowanie złóż w oparciu o właściwości petrograficzne kopalin stałych na przykładzie Jastrzębskiej Spółki Węglowej SA. Górnictwo Odkrywkowe, 58(2), 14–20. [Google Scholar]
  11. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17–27. https://doi.org/10.33271/mining17.01.017 [CrossRef] [Google Scholar]
  12. Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Dubiei, Yu.V., Cabana, E.C., & Shavarskyi, Ia.T. (2019). Technological, lithological and economic aspects of data geometrization in coal mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 22–28. https://doi.org/10.29202/nvngu/2019-5/4 [Google Scholar]
  13. Mendygaliyev, A., Arshamov, Ya., & Yazikov E. (2022). Orthogonal-contour geometrization of hydrogenetic ore mineralizations. Engineering Journal of Satbayev University, 144(3), 30–33. https://doi.org/10.51301/ejsu.2022.i3.05 [CrossRef] [Google Scholar]
  14. Dyczko, A., Galica, D., & Sypniowski, S. (2012). Deposit model as a first step in mining production scheduling. (2012). Geomechanical Processes during Underground Mining – Proceeding of the School of Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
  15. Dyczko, A. (2007). Thin Coal Seams, Their Role in the Reserve Base of Poland. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining, International Mining Forum, 2007, 81–87. https://doi.org/10.1201/noe0415436700.ch10 [CrossRef] [Google Scholar]
  16. Stano, M., Żaba, J., & Małolepszy, Z. (2014). Trójwymiarowy model geologiczny złoża węgla kamiennego KWK “Knurów-Szczygłowice”. Przeglad Geologiczny, 62(12), 846–847. [Google Scholar]
  17. Lewinska, P., Matula, R., & Dyczko, A. (2018). Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability. E3S Web of Confereces, (26), 00008. https://doi.org/10.1051/e3sconf/20182600008 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Cartwright, N. (1983). How the laws of physics lie. Oxford, New York: Clarendon Press, 232 p. [Google Scholar]
  19. Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Ra-ther Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Techno-logical Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [CrossRef] [Google Scholar]
  20. Dyczko, A., & Jarosz, J. (2010). Exploitation of thin hard coal beds in Poland – strategic decisions at the threshold of the 21st century. Mine Safety and Efficient Exploitation Facing Challenges of the 21st Century, 371–378. https://doi.org/10.1201/b11761-51 [CrossRef] [Google Scholar]
  21. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. https://doi.org/10.1051/e3sconf/201912301010 [CrossRef] [EDP Sciences] [Google Scholar]
  22. Peremetchyk, A., Kulikovska, O., Shvaher, N., Chukharev, S., Fedorenko, S., Moraru, R., & Panayotov, V. (2022). Predictive geometrization of grade indices of an iron-ore deposit. Mining of Mineral Deposits, 16(3), 67–77. https://doi.org/10.33271/mining16.03.067 [CrossRef] [Google Scholar]
  23. Sosnowski, P. (2020). A New Look at the Geological Structure of the Knurów Hard Coal Deposit in Light of Model Tests. New Trends in Production Engineering, 3(1), 186–196. https://doi.org/10.2478/ntpe-2020-0015 [CrossRef] [Google Scholar]
  24. Biegun, D., & Krawczyk, A. (2016). Methods of use two-dimensional CAD application environment of mining digital maps to generate three-dimensional modeling of the geological surface layer, Geoinformatica Polonica, (15), 47–55. https://doi.org/10.4467/21995923GP.16.006.5482 [Google Scholar]
  25. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniyenko, V., & Zhomyruk, R. (2024). Modelling mineral reserve assessment using discrete kriging methods. Mining of Mineral Deposits, 18(1), 89–98. https://doi.org/10.33271/mining18.01.089 [CrossRef] [Google Scholar]
  26. Probierz, K., Marcisz, M., & Ignacok, D. (2017). Trójwymiarowy model złoża węgla kamiennego z zastosowaniem środowiska CAD na przykładzie SW części Górnośląskiego Zagłębia Węglowego. Górnictwo Odkrywkowe, (3), 84–85. [Google Scholar]
  27. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of Remote Work to Ensure Mobility in Project Activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  28. PN-G/04501. (1998). Węgiel kamienny i antracyt – Pobieranie próbek pokładowych bruzdowych. [Google Scholar]
  29. Dz.U. 2011 nr 291 poz. 1712. (2011). Rozporządzenie Ministra Środowiska z dnia 22 grudnia 2011 r. w sprawie dokumentacji geologicznej złoża kopaliny. Retrieved from: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20112911712 [Google Scholar]
  30. PN-82/87002. Klasyfikacja węgla kamiennego. Туру węgla. [Google Scholar]
  31. Pałac-Walko, B., & Bodlak, M. (2016). Wpływ składu petrograficznego na właściwości węgla gazowo-koksowego. Cuprum: czasopismo naukowo-techniczne górnictwa rud, (3), 47–62. [Google Scholar]
  32. European Commission. (2024). Improvement of coal carbonization through the optimization of fuel in coking coal blends (RATIO-COAL). Retrieved from: https://data.europa.eu/doi/10.2777/46767 [Google Scholar]
  33. PN-ISO 7404-3:2001. Metody analizy petrograficznej węgla kamiennego [bitumicznego] i antracytu – Metoda oznaczania składu grup macerałów. [Google Scholar]
  34. Kruszewska, K., & Dybova-Jachowicz, S. (1997). Zarys petrologii węgla. Katowice: Wydawnictwo Uniwersytetu Śląskiego. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.