Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01009
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202452601009
Published online 20 May 2024
  1. Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment. [Google Scholar]
  2. Kozłowska-Woszczycka, A., Owczarz, K., & Hajnrych, M. (2022). Geomonitoring jako narzędzie wspomagające zarządzanie środowiskiem na obszarach pogórniczych. In Innowacyjna Zielona Gospodarka. Pt. 3. Inteligentna transformacja terenów pogórniczych (pp. 54–67). Katowice: Główny Instytut Górnictwa. [Google Scholar]
  3. Goerke-Mallet, P., Melchers, C., & Müterthies, A. (2016). Innovative monitoring measures in the phase of post-mining. In IMWA 2016 – “Mining Meets Water – Conflicts and Solutions” (pp. 570–577). Freiberg, Germany. [Google Scholar]
  4. Melchers, C., Goerke-Mallet, P., & Kleineberg, K. (2016). Elements and Aspects of the Post-Mining Era. Mining Report Glückauf, 152(3), 215–223. [Google Scholar]
  5. Knothe, S. (1984). Prognozowanie wpływów eksplaotacji górniczej. Katowice, Polska: Wydawnictwo “Śląsk”, 159 s. [Google Scholar]
  6. Kłeczek, Z. (1994). Geomechanika górnicza. Katowice, Polska: Śląskie Wydawnictwo Techniczne, 197 s. [Google Scholar]
  7. Westermann, S., Dogan, T., Reker, B., Goerke-Mallet, P., Wolkersdorfer, C., & Melchers, C. (2017). Evaluation of mine water rebound processes in European Coal Mine Districts to enhance the understanding of hydraulic, hydrochemical and geomechanical processes. In IMWA 2017 – Mine Water and Circular Economy. Lappeenranta, Finland. [Google Scholar]
  8. Westermann, S., Goerke-Mallet, P., Reker, B., Dogan, T., Wolkersdorfer, C., & Melchers, C. (2017). Aus Erfahrungen lernen: Evaluierung von Grubenwasseranstiegsprozessen zur Verbessung zukünftiger Prognosen. 17. Altbergbau-Kolloquim, 259–273. [Google Scholar]
  9. Sen, S., Zipper, C.E., Wynne, R.H., & Donovan, P.F. (2012) Identifying revegetated mines as disturbance/recovery trajectories using an interannual Landsat chronosequence. Photogrammetric Enginnering & Remote Sensing, 78(3), 223–234. https://doi.org/10.14358/pers.78.3.223 [CrossRef] [Google Scholar]
  10. Kretschmann, J. (2015). The sustainable development strategy of the German hard coal mining industry. In Proceedings of 7th Sustainable Development in the Minerals Industry Conference (pp. 1–9). Vancouver, Canada: University of British Columbia. [Google Scholar]
  11. Pedchenko, M., Pedchenko, L., Nesterenko, T., & Dyczko, A. (2018). Technological Solutions for the Realization of NGH-Technology for Gas Transportation and Storage in Gas Hydrate Form. Solid State Phenomena, (277), 123–136. https://doi.org/10.4028/www.scientific.net/ssp.277.123 [CrossRef] [Google Scholar]
  12. Kononenko, M., Khomenko, O., Cabana, E., Mirek A, Dyczko, A., Prostański, D. & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655–667. https://doi.org/10.46544/AMS.v28i3.10 [CrossRef] [Google Scholar]
  13. Böse, C., Farrenkopf, M., & Weindl, A. (2018). Kohle-Koks-Öl, Die Geschichte des Bergwerk Prosper-Haniel. Münster, Germany: Aschendorff Verlag. [Google Scholar]
  14. RAG Stiftung – Bürgerinformationsdienst (BID) (2024). [online]. Retrieved from https://geodaten.rag.de/mapapps/resources/apps/bid/index.html?lang=de [Google Scholar]
  15. Pawlik, M., Gellendin, M., Bernsdorf, B., Rudolph, T., & Benndorf, J. (2022). Digital-Twin – How to Observe Changes and Trends on the Post-Mining Areas? International Journal of Earth & Environmental Sciences, 7(1). https://doi.org/10.15344/2456-351x/2022/195 [CrossRef] [Google Scholar]
  16. Rudolph, T., Yin, X., & Goerke-Mallet, P. (2022). Umfassende Definition des Geound Umweltmonitoring aus den nachbergbaulichen Erfahrungen im Ruhrgebiet. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 173(4), 513–531. https://doi.org/10.1127/zdgg/2022/0335 [Google Scholar]
  17. Pawlik, M., Rudolph, T., Benndorf, J., & Blachowski, J. (2021). Review of vegetation indices for studies of post-mining processes. IOP Conference Series: Earth and Environmental Science, 942(1), 012034. https://doi.org/10.1088/1755-1315/942/1/012034 [CrossRef] [Google Scholar]
  18. Pawlik, M., Rudolph, T., Bernsdorf, B., Goerke-Mallet, P., Hegemann, M., & Gellendin, M. (2023). Digital Twin – Integriertes Geomonitoring. Glückauf Mining Report, 159(2), 133–145. [Google Scholar]
  19. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
  20. Rouse J.W., Haas R.H., Schell J.A., Deering D.W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Texas, USA: Texas A&M University Remote Sensing Center. College Station, 87 p. [Google Scholar]
  21. Pawlik, M., Rudolph, T., & Bernsdorf, B. (2023). Analysis of changes of the vegetation condition on the area of the closed Prosper-Haniel mine in 1984-2021 using multispectral satellite images. IOP Conference Series: Earth and Environmental Science, 1189(1), 012022. https://doi.org/10.1088/1755-1315/1189/1/012022 [CrossRef] [Google Scholar]
  22. Pawlik, M., Haske, B., Bernsdorf, B., Rudolph, T., & Benndorf, J. (2022). Analyse des Zustands der Vegetation auf dem Gelände des stillgelegten Bergwerks Prosper-Haniel anhand von multispektralen Satellitenbildern der Sentinel-2 Mission und Drohnenflüge. Markscheidewesen 129(1), 37–44. [Google Scholar]
  23. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the rules and procedures for the operation of unmanned aircraft. Retrieved from http://data.europa.eu/eli/reg_impl/2019/947/oj [Google Scholar]
  24. Pawlik, M., Rudolph, T., Bernsdorf, B., & Benndorf, J. (2024). Proposal for a new Green Red Water Index for geo-environmental surface water monitoring. IOP Conference Series: Earth and Environmental Science, 1295(1), 012013. https://doi.org/10.1088/1755-1315/1295/1/012013 [CrossRef] [Google Scholar]
  25. Gao, B. (1996). NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/s0034-4257(96)00067-3 [CrossRef] [Google Scholar]
  26. Chen, D., Huang, J., & Jackson, T.J. (2005). Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sensing of Environment, 98(2-3), 225–236. http://dx.doi.org/10.1016/j.rse.2005.07.008 [CrossRef] [Google Scholar]
  27. Jürgens C. (1997). The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. International Journal of Remote Sensing, 18(17), 3583–3594. https://doi.org/10.1080/014311697216810 [CrossRef] [Google Scholar]
  28. Yang, C.J., & Xu, M. (1998). Discussion on water extraction based on remote sensing information mechanism. Geographical Research, (7), 86–89. [Google Scholar]
  29. Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 [CrossRef] [Google Scholar]
  30. Beshta, O., Cichoń, D., Beshta, O., Khalaimov, T., & Cabana, E. C. (2023). Analysis of the Use of Rational Electric Vehicle Battery Design as an Example of the Introduction of the Fit for 55 Package in the Real Estate Market. Energies, 16(24), 7927. https://doi.org/10.3390/en16247927 [CrossRef] [Google Scholar]
  31. Shen, L., & Li, C. (2010). Water body extraction from Landsat ETM + imagery using adaboost algorithm. In 18th International Conference on Geoinformatics. Beijing, China: Peking University https://doi.org/10.1109/geoinformatics.2010.5567762 [Google Scholar]
  32. Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S.R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, (140), 23–35. https://doi.org/10.1016/j.rse.2013.08.029 [CrossRef] [Google Scholar]
  33. Pawlik, M., Rudolph, T., Bernsdorf, B., & Benndorf, J. (2023). Green Red Water Indices – vegetation indices for environmental Geomonitoring. In XXIII Conference of PhD Students and Young Scientists (pp. 1–3). Wrocław, Poland: Wrocław University of Science and Technology. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.