Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01016
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202452601016
Published online 20 May 2024
  1. Reichl C., & Schatz M. (2023). World Mining Data. Vienna, Austria: Minerals Production, 267 p. Retrieved from https://wmc.agh.edu.pl/wp-content/uploads/2023/05/WMD2023.pdf [Google Scholar]
  2. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  3. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E. C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  4. Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054 [CrossRef] [Google Scholar]
  5. Liao, L., Lou, G., & Chen, M. (2010). An integrated RFID and sensor system for emergency handling in underground coal mines environments. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, (28), 818–824. https://doi.org/10.1007/978-3-642-11723-7_56 [Google Scholar]
  6. Polyanska, A., Savchuk, S., Zapukhliak, I., Zaiachuk, Y., & Stankovska, I. (2022). Digital Maturity of the Enterprise as an Assessment of its Ability to Function in Industry 4.0. Advances in Manufacturing III, 209–227. https://doi.org/10.1007/978-3-030-99310-8_17 [Google Scholar]
  7. Polyanska, А., Pazynich, Yu., Mykhailyshyn, Kh., & Buketov, V. (2023). Еnergy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
  8. Polańska, A., Andriiovych, M., Generowicz, N., Kulczycka, J., & Psyuk, V. (2022). Gamification as an Improvement Tool for HR Management in the Energy Industry – A Case Study of the Ukrainian Market. Energies, 15(4), 1344. https://doi.org/10.3390/en15041344 [CrossRef] [Google Scholar]
  9. Zapukhliak, I., Zaiachuk, Y., Polyanska, A., & Kinash, I. (2019). Applying fuzzy logic to assessment of enterprise readiness for changes. Management Science Letters, 2277–2290. https://doi.org/10.5267/j.msl.2019.7.026 [CrossRef] [Google Scholar]
  10. Polyanska, A., & Psiuk, R. (2019). Cognitive Methods of Manager Behavior Formation in the Conditions of International Enterprise Activities. Advances in Manufacturing II. Lecture Notes in Mechanical Engineering, 194–206. https://doi.org/10.1007/978-3-030-17269-5_14 [Google Scholar]
  11. Zelinska, S. (2020). Machine learning: technologies and potential application at mining companies. E3S Web of Conferences, (166), 03007. https://doi.org/10.1051/e3sconf/202016603007 [CrossRef] [EDP Sciences] [Google Scholar]
  12. Oduro, L. (2022). Development of a Data Analytics & Machine Learning Tool for the Mining Industry. Aspects in Mining & Mineral Science, 10(1), 000726. https://doi.org/10.31031/AMMS.2022.10.000726 [CrossRef] [Google Scholar]
  13. Fu, Y., & Aldrich, C. (2020). Deep Learning in Mining and Mineral Processing Operations: A Review. IFAC-PapersOnLine, 53(2), 11920–11925. https://doi.org/10.1016/j.ifacol.2020.12.712 [CrossRef] [Google Scholar]
  14. Elevli, B, Yaman, İ, & Laratte, B. (2022). Estimation of the Turkish Boron Exportation to Europe. Mining, 2(2), 155–169. https://doi.org/10.3390/mining2020009 [CrossRef] [Google Scholar]
  15. Tsae N., Adachi T, Kawamura Y. (2023). Application of Artificial Neural Network for the Prediction of Copper Ore Grade. Minerals. 13(5):658. https://doi.org/10.3390/min13050658 [CrossRef] [Google Scholar]
  16. Ralston, J., Reid, D., Hargrave, C., & Hainsworth, D. (2014). Sensing for advancing mining automation capability: A review of underground automation technology development. International Journal of Mining Science and Technology, 24(3), 305–310. https://doi.org/10.1016/j.ijmst.2014.03.003 [CrossRef] [Google Scholar]
  17. Javaid, M., Haleem, A., Singh, R.P., Rab, S., & Suman, R. (2021). Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International, (2), 100110. https://doi.org/10.1016/j.sintl.2021.100110 [CrossRef] [Google Scholar]
  18. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  19. Rio Tinto. Official website. Retrieved from https://www.riotinto.com/ [Google Scholar]
  20. Cameco. Official website. Retrieved from https://www.cameco.com/about [Google Scholar]
  21. Jamasmie, C. (2019). Safer, healthier, more productive – the promise of wearables for miners. Retrieved from https://www.mining.com/safer-healthier-more-productive-the-promise-of-wearables-for-miners/ [Google Scholar]
  22. Sala, D., & Bieda, B. (2022). Stochastic approach based on Monte Carlo (MC) simulation used for Life Cycle Inventory (LCI) uncertainty analysis in Rare Earth Elements (REEs) recovery. E3S Web of Conferences, (349), 01013. https://doi.org/10.1051/e3sconf/202234901013 [CrossRef] [EDP Sciences] [Google Scholar]
  23. Lin, I., & Taipei, A. (2016). AI adoption rising, says IBM survey. The Hansen Report on Automotive Electronics, 29(6), 6–8. https://doi.org/10.1007/bf03545892 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.