Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202452601017 | |
Published online | 20 May 2024 |
- Vasylieva, I.V. (2019). Umist hermaniiu u vuhilnykh plastakh Lvivsko-Volynskoho baseinu ta Donbasu. Mineralni Resursy Ukrainy, (3), 11–14. https://doi.org/10.31996/mru.2019.3.11-14 [Google Scholar]
- Ryś, K., Chmura, D., Dyczko, A., & Woźniak, G. (2024). The Biomass Amount of Spontaneous Vegetation Concerning the Abiotic Habitat Conditions in Coal Mine Heaps as Novel Ecosystems. Journal of Ecological Engineering, 25(5), 79–100. https://doi.org/10.12911/22998993/185586 [CrossRef] [Google Scholar]
- Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniienko, V., & Abdiev, A. (2022). Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation. Mining of Mineral Deposits, 16(1), 68–76. https://doi.org/10.33271/mining16.01.068 [CrossRef] [Google Scholar]
- Ishkov, V., & Kozii, Ye. (2020). Deiaki osoblyvosti rozpodilu beryliiu u vuhilnomu plasti k5 shakhty “Kapitalna” Krasnoarmiiskoho heoloho-promyslovoho raionu Donbasu. Visnyk Odeskoho Nationalnoho Universytetu. Seriia “Heohrafichni ta heolohichni nauky”, 25(1(36)), 214–227. https://doi.org/10.18524/2303-9914.2020.1(36).205180 [Google Scholar]
- Bitimbayev, M.Z. (2022). The role and importance of chemical elements clarks in the practical expanded reproduction of mineral resources. Engineering Journal of Satbayev University, 144(1), 48–56. https://doi.org/10.51301/ejsu.2022.i1.08 [CrossRef] [Google Scholar]
- Ishkov, V., & Kozii, Ye. (2021). Distribution of arsene and mercury in the coal seam k5 of the Kapitalna mine, Donbas. Mineralogical Journal, 43(4), 73–86. https://doi.org/10.15407/mineraljournal.43.04.073 [CrossRef] [Google Scholar]
- Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Rather Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [CrossRef] [Google Scholar]
- Koziy, E. (2018). Arsenic, beryllium, fluorine and mercury in the coal of the layer с8в of the “Dniprovska” mine of Pavlogradsko-Petropavlovskiy geological and industrial district. Journal of Geology, Geography and Geoecology, 26(1), 113–120. https://doi.org/https://doi.org/10.15421/111812 [Google Scholar]
- Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 245–253. [Google Scholar]
- Saber, E.S.A., Ismael, A., Embaby, A., Darwish, Y.Z., Selim, S.M., Gomaa, E., & Arafat, A.A. (2023). Geological and geostatistical analysis for equivalent uranium and thorium mineralization, Gattar-V Eastern Desert, Egypt. Mining of Mineral Deposits, 17(4), 18–28. https://doi.org/10.33271/mining17.04.018 [CrossRef] [Google Scholar]
- Kozii, Ye.S. (2021). Arsenic, mercury, fluorine and beryllium in the с1 coal seam of the Blahodatna mine of Pavlohrad-Petropavlivka geological and industrial area of Western Donbas. Heotekhnichna Mekhanika, (159), 58–68. https://doi.org/10.15407/geotm2021.159.058 [Google Scholar]
- Ishkov, V.V., Koziy, Ye.S. (2017). Pro rozpodil toksychnykh i potentsiino toksychnykh elementiv u vuhilli plasta c7n shakhty “Pavlohradska” Pavlohradsko-Petropavlivskoho heoloho-promyslovoho raionu. Visnyk Kyivskoho Natsionalnoho Universytetu imeni Tarasa Shevchenka. Seriia “Heolohiia”, (79), 59–66. https://doi.org/10.17721/1728-2713.79.09 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
- Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
- Kozar, M., Ishkov, V., Kozii, Ye., & Pashchenko, P. (2020). New data about the distribution of nickel, lead and chromium in the coal seams of the Donetsk-Makiivka geological and industrial district of the Donbas. Journal of Geology, Geography and Geoecology, 29(4), 722–730. http://doi:10.15421/112065 [CrossRef] [Google Scholar]
- Ishkov, V., Kozii, Ye., & Kozar, M. (2023). Development of classifications of oil deposits by the content of metals (on the example of the Dnipro-Donetsk depression). Mineral resources of Ukraine, (1), 23–34. https://doi.org/10.31996/mru.2023.1.23-34 [Google Scholar]
- Ishkov, V., Kozii, Ye., Kozar, M., Yerofieiev, A., Bartashevskiy, S., & Dreshpak, O. (2023). Peculiarities of the total content of metals in oil deposits of the Dnipro-Donetsk depression. Zbirnyk naukovykh prats Natsionalnoho Hirnychoho Universytetu, (72), 98–114. https://doi.org/10.33271/crpnmu/72.098 [Google Scholar]
- Ishkov, V., & Kozii, Ye. (2024). Geochemistry features of mercury in oils from the deposits of the Dnipro-Donetsk depth. Mining Machines, 42(1), 12–29. https://doi.org/10.32056/KOMAG2024.1.2 [Google Scholar]
- Ishkov, V., Kozii, Ye., Chernobuk, O., & Pashchenko, P. (2022). The relationship of germanium concentrations and the thickness of the c8н coal seam of the “Dniprovska” coal mine. Heotekhnichna Mekhanika, (162), 164–176. https://doi.org/10.15407/geotm2022.162.164 [Google Scholar]
- Ishkov, V., & Kozii, Ye. (2022). Method of clusterization of c6 coal seam zones of different thickness in the Dniprovska mine field by germanium concentration. Heotekhnichna Mekhanika, (163), 5–15. https://doi.org/10.15407/geotm2022.163.005 [Google Scholar]
- Ishkov, V., Kozii, Ye., & Chernobuk, O. (2023). Geochemical peculiarities of germanium, arsenic, mercury, beryllium, fluorine and total sulfur in the c8н coal seam of the Dniprovska mine field. Heotekhnichna Mekhanika, (164), 21–36. https://doi.org/10.15407/geotm2023.164.021 [Google Scholar]
- Ludden, J., Peach, D., & Flight, D. (2015). Geochemically Based Solutions for Urban Society: London, A Case Study. Elements, 11(4), 253–258. https://doi.org/10.2113/gselements.11.4.253 [CrossRef] [Google Scholar]
- Argyraki, A., Botsou, F., & Kelepertzis, E. (2021). Is magnetic susceptibility a good proxy for geochemically reactive potentially toxic elements in soils? Goldschmidt2021 Abstracts. https://doi.org/10.7185/gold2021.6837 [Google Scholar]
- Chernobuk, O., Ishkov, V., Kozii, Ye., Kozar, M., Pashchenko, P., & Dreshpak, O. (2023). Germanium relationship with ash and “toxic” elements in coal on the example of seam c5 of the Blahodatna mine field of Western Donbas. Scientific Papers of DonNTU. Series: “The Mining and Geology”, 2(30), 68–79. https://doi.org/10.31474/2073-9575-2023-2-30-68-79 [Google Scholar]
- Abuova, R.Zh., Ten, E.B., & Burshukova, G.A. (2021). Study of vibration properties of ceramic-metal nanostructural tin-cu coatings with different copper content 7 and 14 at. % on chromium-nickel-vanadium steels. News of the National Academy of Sciences of the Republic of Kazakhstan, 5(449), 6–13. https://doi.org/10.32014/2021.2518-170X.92 [CrossRef] [Google Scholar]
- Ishkov, V., Kozii, Ye., Kozar, M., & Chernobuk, O. (2022). Distribution of germanium in c4 coal seam of «Samarska» mine of the Pavlohrad-Petropavlivka geological and industrial area of the Donbas. Visnyk Odeskoho Nationalnoho Universytetu. Seriia “Heohrafichni ta heolohichni nauky”, 27(2(41), 190–206. https://doi.org/10.18524/2303-9914.2022.2(41).268761 [Google Scholar]
- Chervonyi, I.F. (2014). Effect of accelerated crystallization of silicum and germanium. Technology Audit and Production Reserves, 1(3(15)), 46. https://doi.org/10.15587/2312-8372.2014.21621 [CrossRef] [Google Scholar]
- Ishkov, V., Kozii, Ye., Chernobuk, O., & Khomenko, V. (2022). Clusterization results of different thickness sections of coal seam с10в of the “Dniprovska” mine by the content of germanium. Scientific Papers of DonNTU. Series: “The Mining and Geology”, 1(27)-2(28), 107–115. https://doi.org/10.31474/2073-9575-2022-1(27)-2(28)-107-115 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
- Ishkov, V., Kozii, Ye., & Chernobuk, O. (2022). Analysis of the influence of the с8н coal seam thickness of Dniprovska mine on the content of germanium. Zbirnyk naukovykh prats Natsionalnoho Hirnychoho Universytetu, (70), 76–90. https://doi.org/10.33271/crpnmu/70.076 [Google Scholar]
- Koval, V., Kryshtal, H., Udovychenko, V., Soloviova, O., Froter, O., Kokorina, V., & Veretin, L. (2023). Review of mineral resource management in a circular economy infrastructure. Mining of Mineral Deposits, 17(2), 61–70. https://doi.org/10.33271/mining17.02.061 [CrossRef] [Google Scholar]
- Richardson, E., Bouma-Gregson, K., O’Donnell, K., & Bergamaschi, B. (2023). A Simple Approach to Modeling Light Attenuation in the Sacramento–San Joaquin Delta Using Commonly Available Data. San Francisco Estuary and Watershed Science, 21(4). https://doi.org/10.15447/sfews.2023v21iss4art5 [CrossRef] [Google Scholar]
- Kosai, K., Huang, H., & Yan, J. (2017). Comparative Study of Phase Transformation in Single-Crystal Germanium during Single and Cyclic Nanoindentation. Crystals, 7(11), 333. https://doi.org/10.3390/cryst7110333 [CrossRef] [Google Scholar]
- Yudovich, Ya., & Ketris, M. (2004). Germanium in coals. Syktyvkar, 216 p. [Google Scholar]
- GOST 9815-75. (1975). Brown coal, hard coal, anthracite and combustible shales. Method for sampling of seam samples. Standartinform P., 6 s. [Google Scholar]
- GOST 10175-75. (1975). Brown coals, hard coals, anthracites, carbonaceous argillites and alevrolites. Method for the determination of germanium. Standartinform Publ., 14 s. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.