Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202452601019 | |
Published online | 20 May 2024 |
- Gumenik, I., & Lozhnikov, O. (2015). Current condition of damaged lands by surface mining in Ukraine and its influence on environment. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 139–143. https://doi.org/10.1201/b19901-26 [CrossRef] [Google Scholar]
- Kogel, J.E. (2014). Mining and processing kaolin. Elements, 10(3), 189–193. [CrossRef] [Google Scholar]
- Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 97–103. https://doi.org/10.33271/nvngu/2022-6/097 [CrossRef] [Google Scholar]
- Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., Dyczko, A., & Cabana, E. (2021). Gas hydrates technologies in the joint concept of geoenergy usage. E3S Web of Conferences, (230), 01023. https://doi.org/10.1051/e3sconf/202123001023 [CrossRef] [EDP Sciences] [Google Scholar]
- Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
- Chmura, D., Jagodziński, A. M., Hutniczak, A., Dyczko, A., & Woźniak, G. (2022). Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 14(17), 10829. https://doi.org/10.3390/su141710829 [CrossRef] [Google Scholar]
- Frost, R. L., Horváth, E., Makó, É., & Kristóf, J. (2004). Modification of lowand high-defect kaolinite surfaces: implications for kaolinite mineral processing. Journal of Colloid and Interface Science, 270(2), 337–346. https://doi.org/10.1016/j.jcis.2003.10.034 [CrossRef] [PubMed] [Google Scholar]
- Dill, H.G. (2016). Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, (161), 16–129. https://doi.org/10.1016/j.earscirev.2016.07.003 [CrossRef] [Google Scholar]
- Pruett, R.J. (2016). Kaolin deposits and their uses: Northern Brazil and Georgia, USA. Applied Clay Science, (131), 3–13. https://doi.org/10.1016/j.clay.2016.01.048 [CrossRef] [Google Scholar]
- Longhi, M.A., Rodríguez, E.D., Bernal, S.A., Provis, J.L., & Kirchheim, A.P. (2016). Valorisation of a kaolin mining waste for the production of geopolymers. Journal of Cleaner Production, (115), 265–272. https://doi.org/10.1016/j.jclepro.2015.12.011 [CrossRef] [Google Scholar]
- Anisimov, O., Symonenko, V., Cherniaiev, O., & Shustov, O. (2018). Formation of safety conditions for development of deposits by open mining. E3S Web of Conferences, (60), 00016. https://doi.org/10.1051/e3sconf/20186000016 [CrossRef] [EDP Sciences] [Google Scholar]
- Sobko, B.Yu., Denyschenko, O.V., Lozhnikov, O.V., & Kardash, V.A. (2018). The belt conveyor effectiveness at the rock haulage under flooded pit excavations. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 26–32. https://doi.org/10.29202/nvngu/2018-6/4 [CrossRef] [Google Scholar]
- Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y., & Smoliński, A. (2023). Managing the rock mass destruction under the explosion. Journal of Sustainable Mining, 22(3), 240. https://doi.org/10.46873/2300-3960.1391 [CrossRef] [Google Scholar]
- Moldabayev, S.K., Adamchuk, A.A., Toktarov, A.A., Aben, E., & Shustov, O.O. (2020). Approbation of the technology of efficient application of excavator-automobile complexes in the deep open mines. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 30–38. https://doi.org/10.33271/nvngu/2020-4/030 [CrossRef] [Google Scholar]
- Kicki, J., & Dyczko, A. (2010). The concept of automation and monitoring of the production process in an underground mine. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 245–253. https://doi.org/10.1201/b11329-40 [Google Scholar]
- Sobko, B., Lozhnikov, O., & Drebenshtedt, C. (2020). Investigation of the influence of flooded bench hydraulic mining parameters on sludge pond formation in the pit residual space. E3S Web of Conferences, (168), 00037. https://doi.org/10.1051/e3sconf/202016800037 [CrossRef] [EDP Sciences] [Google Scholar]
- Lozhnikov, O., & Malook, O. (2024). Justification the surface mining system parameters of amber pits with semi-mobile beneficiation plants. IOP Conference Series: Earth and Environmental Science, 1319(1), 012013. https://doi.org/10.1088/1755-1315/1319/1/012003 [CrossRef] [Google Scholar]
- Chebanov, M., Sobko, B., & Petlovanyi, M. (2024). Substantiating the rational parameters for a complicated non-transport system when mining low-thickness fireclay deposits. IOP Conference Series: Earth and Environmental Science, 1319(1), 012001. https://doi.org/10.1088/1755-1315/1319/1/012001 [CrossRef] [Google Scholar]
- Adamchuk, A., Pavlychenko, A., Shustov, O., & Bondarenko, A. (2024). Research of land-saving schemes of mining the horizontal sedimentary mineral deposits. IOP Conference Series: Earth and Environmental Science, 1319(1), 012012. https://doi.org/10.1088/1755-1315/1319/1/012012 [CrossRef] [Google Scholar]
- Lozhnikov, O., Sobko, B., & Pavlychenko, A. (2023). Technological Solutions for Increasing the Efficiency of Beneficiation Processes at the Mining of Titanium-Zirconium Deposits. Inzynieria Mineralna, (1), 61–68. http://doi.org/10.29227/IM-2023-01-07 [Google Scholar]
- Anisimov, O.O. (2018). Research on parameters of the working area on an internal dump for developing open pits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 27–34. https://doi.org/10.29202/nvngu/2018-1/17 [CrossRef] [Google Scholar]
- Cherep, A. (2024). Determination of rational technological schemes for the completion of open-pits taking into account land reclamation. IOP Conference Series: Earth and Environmental Science, 1319(1), 012013. https://doi.org/10.1088/1755-1315/1319/1/012013 [CrossRef] [Google Scholar]
- Shustov, O., & Dryzhenko, A. (2016). Organization of dumping stations with combined transport types in iron ore deposits mining. Mining of Mineral Deposits, 10(2), 78–84. https://doi.org/10.15407/mining10.02.078 [CrossRef] [Google Scholar]
- Prokopenko, V.I., Pilov, P.I., Cherep, A.Yu., & Pilova, D.P. (2020). Managing mining enterprise productivity by open pit reconstruction. Eurasian Mining, 42–46. https://doi.org/10.17580/em.2020.01.08 [Google Scholar]
- Adamchuk, A., & Shustov, O. (2023). Control of dump stability lading rock on its edge. Inżynieria Mineralna, 1(1), 91–96. https://doi.org/10.29227/IM-2023-01-11 [Google Scholar]
- Chebanov, M.O., Pcholkin, H.D., Makurin, A.A., & Lozhnikov, O.V. (2023). Substantiation of the technological parameters of bucket-wheel excavator forward trench when mining titanium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 5–11. https://doi.org/10.33271/nvngu/2023-6/005 [CrossRef] [Google Scholar]
- Cherniaiev, O., Anisimov, O., Saik, P., & Akimov, O. (2024). Theoretical substantiation of water inflow into the mined-out space of quarries mining hard-rock building materials. IOP Conference Series: Earth and Environmental Science, 1319(1), 012004. https://doi:10.1088/1755-1315/1319/1/012004 [CrossRef] [Google Scholar]
- Haddad, J.S., Denyshchenko, O., Kolosov, D., Bartashevskyi, S., Rastsvietaiev, V., & Cherniaiev, O. (2021). Reducing Wear of the Mine Ropeways Components Basing Upon the Studies of Their Contact Interaction. Archives of Mining Sciences, 579–594. https://doi.org/10.24425/ams.2021.139598 [Google Scholar]
- Sdvyzhkova, O., Babets, D., Kravchenko, K., & Smirnov, A.V. (2015). Rock state assessment at initial stage of longwall mining in terms of poor rocks of Western Donbass. New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 65–70. https://doi.org/10.1201/B19901-13 [Google Scholar]
- Cherniaiev, O., Pavlychenko, A., Romanenko, O., & Vovk, Y. (2021). Substantiation of resource-saving technology when mining the deposits for the production of crushed-stone products. Mining of Mineral Deposits, 15(4), 99–107. https://doi.org/10.33271/mining15.04.099 [CrossRef] [Google Scholar]
- Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
- Sdvyzhkova, O., Moldabayev, S., Bascetin, A., Babets, D., Kuldeyev, E., Sultanbekova, Z., Amankulov, M., & Issakov, B. (2022). Probabilistic assessment of slope stability at ore mining with steep layers in deep open pits. Mining of Mineral Deposits, 16(4), 11–18. https://doi.org/10.33271/mining16.04.011 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.