Open Access
Issue |
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202452601020 | |
Published online | 20 May 2024 |
- Dychkovskiy, R., & Bondarenko, V. (2006). Methods of Extraction of Thin and Rather Thin Coal Seams in the Works of the Scientists of the Underground Mining Faculty (National Mining University). International Mining Forum 2006, New Technological Solutions in Underground Mining, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [CrossRef] [Google Scholar]
- Krasnovyd, S., Konchits, A., Shanina, B., Valakh, M., Yukhymchuk, V., Skoryk, M., Molchanov, O., & Kamchatny, O. (2023). Coal from the outburst hazardous mine seams: Spectroscopic study. Mining of Mineral Deposits, 17(1), 93–100. https://doi.org/10.33271/mining17.01.093 [CrossRef] [Google Scholar]
- Mullagaliyeva, L.F., Baimukhametov, S.K., Portnov, V.S., & Yurov, V.M. (2022). On the issue of thermal destruction of coal matter. Engineering Journal of Satbayev University, 144(1), 57–61. https://doi.org/10.51301/ejsu.2022.i1.09 [CrossRef] [Google Scholar]
- Sosnowski, P., & Jelonek, I. (2022). Facies development of coal seams in the Knurów deposit (Upper Silesia, Poland). International Journal of Coal Geology, (261), 104073. https://doi.org/10.1016/j.coal.2022.104073 [CrossRef] [Google Scholar]
- Wang, F., Liang, Y., & Zou, Q. (2019). Correlation between coal and gas outburst risk and adsorption properties of coal seams. Energy Science & Engineering, 7(3), 974–985. Portico. https://doi.org/10.1002/ese3.326 [CrossRef] [Google Scholar]
- Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., & Dubiei, Yu.V. (2019). Technological, lithological and economic aspects of data geometrization in coal mining. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 22–28. https://doi.org/10.29202/nvngu/2019-5/4 [Google Scholar]
- Dyczko A., Galica D., Sypniowski S. (2012). Deposit model as a first step in mining production scheduling. Geomechanical Processes during Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
- Erkoyun, H., Kadir, S., Külah, T., & Huggett, J. (2017). Mineralogy, geochemistry and genesis of clays interlayered coal seams succession in the Neogene lacustrine Sey-itömer coal deposit, Kütahya, western Turkey. International Journal of Coal Geology, (172), 112–133. https://doi.org/10.1016/j.coal.2017.01.014 [CrossRef] [Google Scholar]
- Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Sabyrova, M., & Verbovska, L. (2023). Directions and prospects of the development of educational services in conditions of energy transfor-mation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal, 26(2), 195–216. https://doi.org/10.33223/epj/162054 [CrossRef] [Google Scholar]
- Van der Flier-Keller, E., & Goodarzi, F. (1992). Regional variations in coal quality in the Canadian Cordillera. Geological Society of America Special Papers, 165–176. https://doi.org/10.1130/spe267-p165 [CrossRef] [Google Scholar]
- Shavarskyi, Ia., Falshtynskyi, V., Dychkovskyi, R., Akimov, O., Sala, D., & Buketov, V. (2022). Management of the longwall face advance on the stress-strain state of rock mass. Mining of Mineral Deposits, 16(3), 78–85. https://doi.org/10.33271/mining16.03.078 [CrossRef] [Google Scholar]
- Sala, D., & Bieda, B. (2022). Stochastic approach based on Monte Carlo (MC) simula-tion used for Life Cycle Inventory (LCI) uncertainty analysis in Rare Earth Elements (REEs) recovery. E3S Web of Conferences, (349), 01013. https://doi.org/10.1051/e3sconf/202234901013 [CrossRef] [EDP Sciences] [Google Scholar]
- Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y., & Cicho, D. (2022). Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 97–103. https://doi.org/10.33271/nvngu/2022-6/097 [CrossRef] [Google Scholar]
- Kovalevs’ka, I., Illiashov, M., Fomychov, V., & Chervatuk, V. (2012). The formation of the finite-element model of the system “undermined massif-support of stope”. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 73–79. https://doi:10.1201/b13157-13 [Google Scholar]
- Sala, D., & Bieda, B. (2019). Life Cycle Inventory (LCI) Approach Used for Rare Earth Elements (REEs) from Monazite Material, Considering Uncertainty. Lanthanides. https://doi.org/10.5772/intechopen.80261 [Google Scholar]
- Dustdar, S., Leitner, P., Nardini, F. M., Silvestri, F., & Tolomei, G. (2013). Mining Lifecycle Event Logs for Enhancing Service-Based Applications. Data Mining, 658–668. https://doi.org/10.4018/978-1-4666-2455-9.ch033 [CrossRef] [Google Scholar]
- Polyanska, A., Pazynich, Y., Mykhailyshyn, K., & Buketov, V. (2023). Energy transition: the future of energy on the base of smart specialization. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 89–95. https://doi.org/10.33271/nvngu/2023-4/089 [CrossRef] [Google Scholar]
- Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniyenko, V., & Zhomyruk, R. (2024). Modelling mineral reserve assessment using discrete kriging methods. Mining of Mineral Deposits, 18(1), 89–98. https://doi.org/10.33271/mining18.01.089 [CrossRef] [Google Scholar]
- Kamiński, P., Dyczko, A., & Prostański, D. (2021). Virtual Simulations of a New Con-struction of the Artificial Shaft Bottom (Shaft Safety Platform) for Use in Mine Shafts. Energies, 14(8), 2110. https://doi.org/10.3390/en14082110 [CrossRef] [Google Scholar]
- Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V., & Dychkovskyi, R. (2022). Simulation of leaching processes of polymetallic ores using the similarity theorem. Rudarsko-Geološko-Naftni Zbornik, 37(5), 169–180. https://doi.org/10.17794/rgn.2022.5.14 [CrossRef] [Google Scholar]
- Kononenko, M., Khomenko, O., Cabana, E., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and +blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(v28/i3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
- Lewinska, P., Matula, R., & Dyczko, A. (2017). Integration of Thermal Digital 3D Model and a MASW (Multichannel Analysis of Surface Wave) as a Means of Improving Monitoring of Spoil Tip Stability. In 2017 Baltic Geodetic Congress (BGC Geomatics). https://doi.org/10.1109/bgc.geomatics.2017.29 [Google Scholar]
- Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. https://doi.org/10.1051/e3sconf/201912301010 [CrossRef] [EDP Sciences] [Google Scholar]
- Kovalevska, I., Samusia, V., Kolosov, D., Snihur, V., & Pysmenkova, T. (2020). Stability of the overworked slightly metamorphosed massif around mine working. Mining of Mineral Deposits, 14(2), 43–52. https://doi.org/10.33271/mining14.02.043 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neu-ral networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
- Dyczko, A. (2023). The geological modelling of deposits, production designing and scheduling in the JSW SA Mining Group. (2023). Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), 35–62. https://doi.org/10.24425/gsm.2023.144628 [Google Scholar]
- Malinowski, L. (2019). Influence of chosen technical constraints on stability of 3D geological model-based schedule in a complex longwall operation. E3S Web of Conferences, (123), 01024. https://doi.org/10.1051/e3sconf/201912301024 [CrossRef] [EDP Sciences] [Google Scholar]
- Krawczyk, A. (2018). A concept for the modernization of underground mining master maps based on the enrichment of data definitions and spatial database technology. E3S Web of Conferences, (26), 00010. https://doi.org/10.1051/e3sconf/20182600010 [CrossRef] [EDP Sciences] [Google Scholar]
- Sobczyk, E. J., Galica, D., Kopacz, M., & Sobczyk, W. (2022). Selecting the Optimal Exploitation Option Using a Digital Deposit Model and the Ahp. SSRN Electronic Journal, (78), 102952. https://doi.org/10.2139/ssrn.4047752 [Google Scholar]
- Kopacz, M., Malinowski, L., Kaczmarzewski, S., & Kamiński, P. (2023). Optimizing mining production plan as a trade-off between resources utilization and economic targets in underground coal mines. (2023). Gospodarka Surowcami Mineralnymi – Mineral Resources Management. https://doi.org/10.24425/gsm.2020.133948 [Google Scholar]
- DGO BD-62. (2021). Geological hole documentation BD-62. JSW SA, 32 p. [Google Scholar]
- DGO BD-62. (2021). Geological hole documentation BD-63. JSW SA, 17 p. [Google Scholar]
- PZWK. (2023). Hard coal deposit development project “Bzie-Dębina 1-Zachód”. [Google Scholar]
- “Dodatek nr 1 do dokumentacji geologicznej złoża węgla kamiennego “Bzie-Dębina 2-Zachód”. Bzie-Dębina, 175. [Google Scholar]
- Siata, E. (2008). Model geologiczny złoża i jego rola w zarządzaniu produkcją. In Szkoła Eksploatacji Podziemnej (pp. 9–18). Szczyrk: Wydawnictwo IGSMiE PAN. [Google Scholar]
- Ozga-Blaschke, U. (2010). Coke coal management. Kraków: Wydawnictwo Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 201 s. [Google Scholar]
- Standard PL. (2018). Standard PN-G-97002:2018-11. Katowice: WUG, 12 p. [Google Scholar]
- Jelonek, I., Poniewiera, M., & Jelonek, Z. (2017). Modelowanie złóż w oparciu o właściwości petrograficzne kopalin stałych na przykładzie Jastrzębskiej Spółki Węglowej SA. Górnictwo Odkrywkowe, 58(2), 14–20. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.