Open Access
Issue |
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 6 | |
Section | Natural & Environmental Resources Management | |
DOI | https://doi.org/10.1051/e3sconf/202452701014 | |
Published online | 24 May 2024 |
- A.F. Pozharskii, A.R. Katritzky, and A.T. Soldatenkov, Heterocycles in Life and Society an introduction to heterocyclic chemistry, biochemistry and applications (Wiley Chichester, 2011) [CrossRef] [Google Scholar]
- A. Andreani, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, V. Garaliene, W. Welsh, S. Arora, G. Farruggia, and L. Masotti, Antitumor Activity of New Substituted 3-(5-Imidazo[2,1-b]thiazolylmethylene)-2-indolinones and Study of Their Effect on the Cell Cycle. J. Med. Chem. 48, 5604 (2005). https://doi.org/10.1021/jm050353e [Google Scholar]
- E.S. Hand and W. W. Paudler, Mechanism of the reaction of 2-haloketones with 2-aminopyridine. Tetrahedron 38, 49 (1982). https://doi.org/10.1016/0040-4020(82)85044-8 [CrossRef] [Google Scholar]
- A. E. Tschitschibabin, Berichte Der Deutschen Chemischen Gesellschaft (Ferd. Tiemann, 1888) [Google Scholar]
- M. Adib, A. Mohamadi, E. Sheikhi, S. Ansari, and H. Bijanzadeh, Microwave-assisted, one-pot reaction of pyridines, α-bromoketones and ammonium acetate: an efficient and simple synthesis of imidazo [1, 2-a]-pyridines. Synlett 2010, 1606 (2010). DOI: 10.1055/s-0029-1219962 [CrossRef] [Google Scholar]
- O. A. Attanasi, L. Bianchi, L. A. Campisi, L. D. Crescentini, G. Favi, and F. Mantellini, A novel solvent-free approach to imidazole containing nitrogen-bridgehead heterocycles. Org. Lett. 15, 3646 (2013). https://doi.org/10.1021/ol4015267 [Google Scholar]
- N. Shao, G.-X. Pang, C.-X. Yan, G.-F. Shi, and Y. Cheng, Reaction of β-Lactam Carbenes with 2-Pyridyl Isonitriles: A One-Pot Synthesis of 2-Carbonyl-3-(pyridylamino)imidazo[1,2-a]pyridines Useful as Fluorescent Probes. J. Org. Chem. 76, 7458 (2011) https://doi.org/10.1021/jo201273p. [Google Scholar]
- N. Shao, G.-X. Pang, X.-R. Wang, R.-J. Wu, and Y. Cheng, Dimerization of 2-pyridylisonitriles produces π-extended fused heteroarenes useful as highly selective colorimetric and optical probes for copper ion. Tetrahedron 66, 7302 (2010). https://doi.org/10.1016/j.tet.2010.06.096 [CrossRef] [Google Scholar]
- J. Jia, Y.-Q. Ge, and X.-T. Tao, Facile synthesis of imidazo [1,2-α] pyridines via tandem reaction. Int. J. for Rev. and C. in Heter. Chem 81, 185 (2010). DOI: 10.3987/com-09-11856 [Google Scholar]
- Y. Li, M. Giulianotti, and R. A. Houghten, High throughput synthesis of 2, 3, 6-trisubstituted-5, 6-dihydroimidazo [2, 1-b] thiazole derivatives. Tetrah. Lett. 52, 696 (2011). https://doi.org/10.1016/j.tetlet.2010.12.006 [Google Scholar]
- E. S. Hand and W. W. Paudler, Mechanism of the reaction of 2-haloketones with 2-aminopyridine. Tetrah. 38, 49 (1982). https://doi.org/10.1016/0040-4020(82)85044-8 [Google Scholar]
- Y. Li, M. Giulianotti, and R. A. Houghten, High throughput synthesis of 2, 3, 6-trisubstituted-5, 6-dihydroimidazo [2, 1-b] thiazole derivatives. Tetrah. Lett. 52, 696 (2011). https://doi.org/10.1016/j.tetlet.2010.12.006 [Google Scholar]
- S. M. A. Shakoor, D. S. Agarwal, A. Kumar, and R. Sakhuja, Copper catalyzed direct aerobic double-oxidative cross-dehydrogenative coupling of imidazoheterocycles with aryl acetaldehydes: an articulate approach for. Tetrah. 72, 645 (2016). https://doi.org/10.1016/j.tet.2015.12.012 [Google Scholar]
- E. Öhler, E. Zbiral, and M. El-Badawi, A novel and versatile synthesis of heterocyclic aldehydes using dialkyl 3-oxo-1-alkenyl-phosphonates. Tetrah. Lett. 24, 5599 (1983). https://doi.org/10.1016/S0040-4039(00)94151-0 [Google Scholar]
- K. Monir, M. Ghosh, S. Jana, P. Mondal, A. Majee, and A. Hajra, Regioselective synthesis of nitrosoimidazoheterocycles using tert-butyl nitrite. Or. & Bio. Chem. 13, 8717 (2015). https://doi.org/10.1039/C5OB01345C [Google Scholar]
- F. Hu and M. Szostak, Recent developments in the synthesis and reactivity of isoxazoles: metal catalysis and beyond. Adv Synth Catal 357, 2583 (2015). https://doi.org/10.1002/adsc.201500319 [CrossRef] [Google Scholar]
- A. K. Bagdi, S. Santra, K. Monir, and A. Hajra, Synthesis of imidazo [1, 2-a] pyridines: a decade update. Chem. Comm. 51, 1555 (2015). https://doi.org/10.1039/C4CC08495K [Google Scholar]
- K. Teranishi, Luminescence of imidazo [1, 2-a] pyrazin-3 (7H)-one compounds. Bioorg. Chem. 35, 82 (2007). https://doi.org/10.1016/j.bioorg.2006.08.003 [Google Scholar]
- Y. Rival, G. Grassy, A. Taudou, and R. Ecalle, Antifungal activity in vitro of some imidazo [1, 2-a] pyrimidine derivatives. Euro. J. of Med. Chem. 26, 13 (1991). https://doi.org/10.1016/0223-5234(91)90208-5 [Google Scholar]
- J. Dam, Z. Ismail, T. Kurebwa, N. Gangat, L. Harmse, H. M. Marques, A. Lemmerer, M. L. Bode, and C. B. de Koning, Synthesis of copper and zinc 2-(pyridin-2-yl) imidazo [1, 2-a] pyridine complexes and their potential anticancer activity. Euro. J. of Med. Chem. 126, 353 (2017). https://doi.Org/10.1016/i.eimech.2016.10.041 [Google Scholar]
- K. S. Gudmundsson, J. D. Williams, J. C. Drach, and L. B. Townsend, Synthesis and Antiviral Activity of Novel Erythrofuranosyl Imidazo[1,2-a]pyridine C-Nucleosides Constructed via Palladium Coupling of Iodoimidazo[1,2-a]pyridines. J. Med. Chem. 46, 1449 (2003). https://doi.org/10.1021/im020339r [Google Scholar]
- M. H. Fisher and A. Lusi, Peptidyl Prolyl cis/trans-Isomerases: Comparative Reactivities of Cyclophilins, FK506-Binding Proteins, and Parvulins with Fluorinated Oligopeptide and Protein Substrates. ACS Pub. (2002). https://doi.org/10.1021/bi051442w [Google Scholar]
- R. Goel, V. Luxami, and K. Paul, Imidazo [1, 2-a] pyridines: Promising drug candidate for antitumor therapy. Current Topics in Medicinal Chemistry 16, 3590 (2016) [CrossRef] [PubMed] [Google Scholar]
- J. J. Kaminski and A. M. Doweyko, Antiulcer Agents. 6. Analysis of the in Vitro Biochemical and in Vivo Gastric Antisecretory Activity of Substituted Imidazo[1,2-a]pyridines and Related Analogues Using. J. Med. Chem. 40, 427 (1997). https://doi.org/10.1021/im950700s [Google Scholar]
- H. Roohi and P. Alizadeh, Fine-tuned dual fluorescence behavior of N-substituted aniline-imidazopyridine based switches: Mechanistic understanding, substituent and solvent effects. Sp. Acta Part A: M. and Bio. Spect. 214, 407 (2019). https://doi.org/10.1016/i.saa.2019.02.075 [Google Scholar]
- A. K. Bagdi, M. Rahman, S. Santra, A. Maiee, and A. Haira, Copper-Catalyzed Synthesis of Imidazo[1,2-a]pyridines through Tandem Imine Formation-Oxidative Cyclization under Ambient Air: One-Step Synthesis of. Adv Synth Catal 355, 1741 (2013). https://doi.org/10.1002/adsc.201300298 [CrossRef] [Google Scholar]
- S. Boggs, V. I. Elitzin, K. Gudmundsson, M. T. Martin, and M. J. Sharp, Kilogram-scale synthesis of the CXCR4 antagonist GSK812397. Org. Process Res. Dev. 13, 781 (2009). https://doi.org/10.1021/op9000675 [Google Scholar]
- O. Kim, Y. Jeong, H. Lee, S.-S. Hong, and S. Hong, Design and synthesis of imidazopyridine analogues as inhibitors of phosphoinositide 3-kinase signaling and angiogenesis. J. Med. Chem. 54, 2455 (2011). https://doi.org/10.1021/im101582z [Google Scholar]
- A. A. Trabanco, G. Tresadern, G. J. Macdonald, J. A. Vega, A. I. De Lucas, E. Matesanz, A. Garcia, M. L. Linares, S. A. Alonso De Diego, J. M. Alonso, D. Oehlrich, A. Ahnaou, W. Drinkenburg, C. Mackie, J. I. Andrés, H. Lavreysen, and J. M. Cid, Imidazo[1,2-a]pyridines: Orally Active Positive Allosteric Modulators of the Metabotropic Glutamate 2 Receptor. J. Med. Chem. 55, 2688 (2012). https://doi.org/10.1021/im201561r [Google Scholar]
- J. Rether, G. Erkel, T. Anke, J. Baitner, and O. Sterner, Imidazo [1, 2-a] pyridine derivatives as inhibitors of TNF-α expression in T cells. Bioorg. and Med. Chem. 16, 1236 (2008). https://doi.org/10.1016/i.bmc.2007.10.074 [Google Scholar]
- G. C. Moraski, L. D. Markley, J. Cramer, P. A. Hipskind, H. Boshoff, M. A. Bailey, T. Alling, J. Ollinger, T. Parish, and M. J. Miller, Advancement of Imidazo[1,2-a]pyridines with Improved Pharmacokinetics and nM Activity vs. Mycobacterium tuberculosis. ACS Med. Chem. Lett. 4, 675 (2013). https://doi.org/10.1021/ml400088y [Google Scholar]
- G. N. Raiu, K. B. Sai, J. Raiaraieswari, V. Vasanthi, K. Priya, P. Vandana, and R. R. Nadendla, [PDF] Synthesis, Characterization and Antimicrobial Screening of Novel Series of Bis-Imidazo [1, 2-a] Pyridine Derivatives. J. of D. Dis. and Ther. 3, 39 (2015) [Google Scholar]
- M. J. Miller, Use of Levamisole in Parasitic Infections. Drugs. 20, 122 (1980). https://doi.org/10.2165/00003495-198020020-00005 [Google Scholar]
- M. A. Shareef, K. Sirisha, I. B. Sayeed, I. Khan, T. Ganapathi, S. Akbar, C. Ganesh Kumar, A. Kamal, and B. Nagendra Babu, Synthesis of new triazole fused imidazo [2, 1-b] thiazole hybrids with emphasis on Staphylococcus aureus virulence factors. Bio. and Med. Chem. Lett. 29, 126621 (2019). https://doi.org/10.1016/i.bmcl.2019.08.025 [Google Scholar]
- M. F. Baig, V. L. Nayak, P. Budaganaboyina, K. Mullagiri, S. Sunkari, J. Gour, and A. Kamal, Synthesis and biological evaluation of imidazo [2, 1-b] thiazole-benzimidazole coniugates as microtubule-targeting agents. Bio. Chem. 77, 515 (2018). https://doi.org/10.1016/i.bioorg.2018.02.005 [Google Scholar]
- L. J. Powers, S. W. Fogt, Z. S. Ariyan, D. J. Rippin, R. D. Heilman, and R. J. Matthews, Effect of structural change on acute toxicity and antiinflammatory activity in a series of imidazothiazoles and thiazolobenzimidazoles. J. Med. Chem. 24, 604 (1981). https://doi.org/10.1021/im00137a022 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.