Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 01015
Number of page(s) 11
Section Natural & Environmental Resources Management
DOI https://doi.org/10.1051/e3sconf/202452701015
Published online 24 May 2024
  1. M. Learmonth, Trends in production and consumption in agriculture in Morocco. Accessed: Feb. 10, (2024). Online. Available: https://globaltribune.net/trends-in-production-and-consumption-in-agriculture-in-morocco [Google Scholar]
  2. J. Krickl, Working Towards Food Safety and Animal Health in Morocco. Accessed: Feb. 10, (2024). Online. Available: https://www.iaea.org/newscenter/news/working-towards-food-safety-and-animal-health-in-morocco [Google Scholar]
  3. H. Chaoui, A. Khattabi, N. Rhalem, S. Ilham, I. Mouncef, and R. Bencheikh, Rapport du centre anti Poison du Maroc: année 2009, Toxicologie Maroc, 5, 10–13 (2010) [Google Scholar]
  4. A. Fagrach, S. Fellahi, M.K. Challioui, O. Arbani, I. El Zirani, F. Kichou, M. Bouslikhane, Backyard Poultry Flocks in Morocco: Demographic Characteristics, Husbandry Practices, and Disease and Biosecurity Management. J. Anim., 13(2), 202 (2023). http://dx.doi.org/10.3390/ani13020202. [Google Scholar]
  5. Z. Snoussi and S. Ahid, Knowledge, Attitude, and Practices of Moroccan Retail Pharmacists towards Veterinary Medicines. Adv. Pharmacol. Pharm. Sci. 1–7, (2022). https://doi.org/10.1155/2022/9973945. [Google Scholar]
  6. C. Chandrakar, S. Shakya, A. Patyal, D. Bhonsle, and A. K. Pandey, Detection of antibiotic residues in chicken meat from different agro-climatic zones of Chhattisgarh, India by HPLC-PDA and human exposure assessment and risk characterization. Food Control. (148), 109667 (2023). https://doi.org/10.1016/j.foodcont.2023.109667. [CrossRef] [Google Scholar]
  7. K. Muaz, M. Riaz, S. Akhtar, S. Park, and A. Ismail, Antibiotic Residues in Chicken Meat: Global Prevalence, Threats, and Decontamination Strategies: A Review, J. Food Prot. 81(4), 619–627 (2018). https://doi.org/10.4315/0362-028X.JFP-17-086. [Google Scholar]
  8. S. Chouhan, K. Sharma, and S. Guleria, Antimicrobial Activity of Some Essential Oils— Present Status and Future Perspectives. J. Med. (Basel), 4(3), 58 (2017). https://doi.org/10.3390/medicines4030058. [Google Scholar]
  9. E. Gadisa, G. Weldearegay, K. Desta, G. Tsegaye, S. Hailu, K. Jote, A. Takele, Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria, BMC Complement Altern Med, 19(1), 24 (2019). https://doi.org/10.1186/s12906-019-2429-4. [CrossRef] [PubMed] [Google Scholar]
  10. K. Wińska, W. Mączka, J. Łyczko, M. Grabarczyk, A. Czubaszek, and A. Szumny, Essential Oils as Antimicrobial Agents—Myth or Real Alternative?. J. Molecules. 24(11), 2130, (2019). https://doi.org/10.3390/molecules24112130. [CrossRef] [Google Scholar]
  11. M. Abers, S. Schroeder, L. Goelz, A. Sulser, T. St-Rose, K. Puchalski, and J. Langland, Antimicrobial activity of the volatile substances from essential oils, BMC complement. med. ther, 21, 124 (2021). https://doi.org/10.1186/s12906-021-03285-3. [CrossRef] [Google Scholar]
  12. M. K. Swamy, M. S. Akhtar, and U. R. Sinniah, Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. J. Evid. Based Complementary Altern. Med. 3012462 (2016). https://doi.org/10.1155/2016/3012462. [Google Scholar]
  13. A. Puškárová, M. Bučková, L. Kraková, D. Pangallo, and K. Kozics, The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 7(1), (2017). https://doi.org/10.1038/s41598-017-08673-9. [Google Scholar]
  14. L. C. Salanţă and J. Cropotova, An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants. 11(19), (2022). https://doi.org/10.3390/plants11192488. [Google Scholar]
  15. K. Saeed, I. Pasha, M.F. JahangirChughtai, Z. Ali, H. Bukhari, and M. Zuhair, Application of essential oils in food industry: challenges and innovation, J. Essent. Oil Res. 34(2), 97–110 (2022). https://doi.org/10.1080/10412905.2022.2029776. [CrossRef] [Google Scholar]
  16. S. Kocić-Tanackov and H. Pavlović, Natural Antimicrobial Agents Utilized in Food Preservation. Foods. 12(18), 3484 (2023). https://doi.org/10.3390/foods12183484. [CrossRef] [Google Scholar]
  17. H. Lee, 10 Natural Alternatives to Chemical Preservatives, Mosaic. (2024). https://www.mosaicfoods.com/blogs/main/10-natural-alternatives-to-chemical-preservatives. [Google Scholar]
  18. H. Jaber, R. Ijoub, B. Bourkhiss, M. Chakit, and M. Ouhssine, Antibioresistance of Escherichia coli strains isolated from turkey meat marketed in Kenitra city (Morocco). (7), 198–265 (2018) [Google Scholar]
  19. H. Jaber, R. Ijoub, R. Erahioui, R. Boulamtat, A. Oubayoucef, B. Bourkhiss, M. Ouhssine, Comparison of the microbiological and hygienic quality of turkey meat between six districts of the Kenitra city. E3S Web of Conferences, (319), 01044 (2021). https://doi.org/10.1051/e3sconf/202131901044. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J.F. Clevenger, Apparatus for the Determination of Volatile Oil, J. Am. Pharm. Assoc. (1912). 17(4), 345–349 (1928). https://doi.org/10.1002/jps.3080170407. [CrossRef] [Google Scholar]
  21. AFNOR, Association Française de Normalisation, Méthode de référence pratique (Bulletin officiel n°2000-20). (2000) [Google Scholar]
  22. A. Bouyahya, N. Dakka, A. Talbaoui, A. Et-Touys, H. El-Boury, J. Abrini, Y. Bakri, Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic Oregano (Origanum compactum Benth). Ind. Crops. Prod. (108), 729–737 (2017) [CrossRef] [Google Scholar]
  23. A. Pinto, M. C. Mancebo, J. L. Eisen, M. E. Pagano, and S. A. Rasmussen, The Brown Longitudinal Obsessive Compulsive Study: clinical features and symptoms of the sample at intake. J. Clin. Psychiatry. 67(5), 703–711 (2006). https://doi.org/10.4088/jcp.v67n0503. [CrossRef] [PubMed] [Google Scholar]
  24. D. Beatovic, D. Krstic-Milosevic, S. Trifunovic, J. Siljegovic, J. Glamoclija, M. Ristic, and S. Jelacic, Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Rec. Nat. Prod. 9(1), 62 (2015) [Google Scholar]
  25. P.A. Ntonga, P. Belong, F. Tchoumbougnang, and H. Fankem, Composition chimique et effets insecticides des huiles essentielles des feuilles fraîches d’ Ocimum canum Sims et d’Ocimum basilicum L. sur les adultes d’Anopheles funestus ss, vecteur du paludisme au Cameroun. J. Applied Biosci. 59, 4340–4348 (2012) [Google Scholar]
  26. A. Ouibrahim, Y.T.A. Kaki, S. Bennadja, R. Mansouri, S.A. Kaki, S. Khbizi, and M.R. Djebar, Activité antioxydante et anti-candidosique de l’huile essentielle de Laurus nobilis L. provenant de la region d’El Kala (Nord–Est Algérien), Alger. J. Nat. Prod. 3(3), (2015) [Google Scholar]
  27. B. Imelouane, H. Amhamdi, J. Wathelet, M. Ankit, K. Khedid, and A. Elbachiri, Chemical composition and antimicrobial activity of essential oil of thyme (Thymus vulgaris) from eastern Morocco. Int. J. Agric Biol. (2009). Online Available: https://www.semanticscholar.org/paper/Chemical-composition-and-antimicrobial-activity-of-Imelouane-Amhamdi/7e34e0a05ccc62f6800ad5c4f1448f18939e4783. [Google Scholar]
  28. F. El-akhal, H. Greche, O. Fouad, R. Guemmouh, and A. El Ouali Lalami, Chemical composition and larvicidal activity of Culex pipiens essential oil of Thymus vulgaris grown in Morocco. J. Mater. Environ. Sci. (6), 214–219 (2015) [Google Scholar]
  29. O. Borugă, C. Jianu, C. Mişcă, I. Goleţ, A. Gruia, and F. Horhat, Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J. Med. Life., 7(3), 56–60 (2014) [Google Scholar]
  30. A. Khalilipour and M. Dejam, Essential oil composition of Pennyroyal (Mentha pulegium L.) from Southern Iran. J. Herb. Med. 5(1), 33–38 (2014) [Google Scholar]
  31. A.P.D.A.M. Foganholi, J.F.D.S. Daniel, D.C. Santiago, J.R. Orives, J.P. Pereira, and T.D.J. Faria, Composição química e atividade antifúngica do óleo essencial de poejo em diferentes estágios de desenvolvimento. Sem. Ci. Agr. 36(5), 3091 (2015). https://doi.org/10.5433/1679-0359.2015v36n5p3091. [CrossRef] [Google Scholar]
  32. B. Marzouk, M.B.H. Fredj, I. Chraief, M. Mastouri, K. Boukef, and Z. Marzouk, Chemical composition and antimicrobial activity of essential oils from Tunisian Mentha pulegium L., (2008) [Google Scholar]
  33. Elhoussine Derwich, Zineb Benziane, Abdellatif Manar, Abdellatif Boukir, And Rachid Taouil, Phytochemical Analysis and in vitro antibactterial activity of the Essential Oil of Origanum vulgare from Morocco, Am. Eurasian J. Agric. Environ. Sci. 5(2), 120–129 (2010). https://eprints.umi.ac.ma/292/ [Google Scholar]
  34. H. Boukhebti, A.N. Chaker, H. Belhadj, F. Sahli, M. Ramdhani, H. Laouer, and D. Harzallah, Chemical composition and antibacterial activity of Mentha pulegium L. and M. spicata L. essential oils. Pharm. Lett. (3), 267–275 (2011) [Google Scholar]
  35. A. Stoyanova, E. Georgiev, J. Kula, and T. Majda, Chemical Composition of the Essential Oil of Mentha pulegium L. from Bulgaria, J. Essent. Oil Res. (17), 475–476 (2005). https://doi.org/10.1080/10412905.2005.9698968. [CrossRef] [Google Scholar]
  36. T. Baj, A. Biernasiuk, R. Wróbel, and A. Malm, Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chem. 18(1), 108–118 (2020). https://doi.org/10.1515/chem-2020-0011 [CrossRef] [Google Scholar]
  37. J. Antih, M. Houdkova, K. Urbanova, and L. Kokoska, Antibacterial activity of Thymus vulgaris L. essential oil vapours and their GC/MS analysis using solid-phase microextraction and syringe headspace Sampling Techniques. J. Molecules. 26(21), 6553 (2021). https://doi.org/10.3390/molecules26216553 [CrossRef] [Google Scholar]
  38. S. Mollaei, M. Ebadi, S. Hazrati, B. Habibi, F. Gholami, and M.M. Sourestani, Essential oil variation and antioxidant capacity of Mentha pulegium populations and their relation to ecological factors. Biochem. Syst. Ecol. 91, 104084 (2020). https://doi.org/10.1016/i.bse.2020.104084 [CrossRef] [Google Scholar]
  39. M. Bektašević, O. Politeo, and I. Carev, Comparative study of chemical composition, cholinesterase inhibition and antioxidant potential of Mentha pulegium L. essential oil. Chem. Biodiversity., 18(3), e2000935 (2021). https://doi.org/10.1002/cbdv.202000935 [CrossRef] [PubMed] [Google Scholar]
  40. S. Amalich, H. Zerkani, I. Tagnaout, C. Ali, F. Kamal, and T. Zair, Chemical composition of the essential oil and isolation of two main constituents of Mentha pulegium L. Vegetos, 37(1), 82–93 (2024). https://doi.org/10.1007/s42535-023-00572-x [Google Scholar]
  41. S. Zantar, D. El-Garrouj, R. Pagán, M. Chabi, A. Laglaoui, M. Bakkali, and M.H. Zerrouk, Effect of harvest time on yield, chemical composition, antimicrobial and antioxidant activities of Thymus vulgaris and Mentha pulegium essential oils. European J. Med. Plants. 8(2), 69–77 (2015). https://doi.org/10.9734/EJMP/2015/17513 [CrossRef] [Google Scholar]
  42. N. Zekri, H. Elazzouzi, A. Ailli, A.A. Gouruch, F.Z. Radi, M.A. El Belghiti, T. Zair, G. Nieto, J.A. Centeno, and J.M. Lorenzo, Physicochemical characterization and antioxidant properties of essential oils of M. pulegium (L.), M. suaveolens (Ehrh.) and M. spicata (L.) from Moroccan Middle-Atlas. Foods. 12(4), 760 (2023) [CrossRef] [Google Scholar]
  43. D. Alimi, A. Hajri, S. Jallouli, and H. Sebai, Acaricidal and anthelmintic efficacy of Ocimum basilicum essential oil and its major constituents estragole and linalool, with insights on acetylcholinesterase inhibition. Vet. Parasitol. (309), 109743 (2022). https://doi.org/10.1016/j.vetpar.2022.109743 [CrossRef] [Google Scholar]
  44. N.X. Luong, N.T. Nhan, N.T. Thuy, and T.X. Vinh, Chemical composition, antimicrobial and antioxidant activitites of essential oil from (Ocimum Basilicum L.) collected in thanh hoa province. J. Sci., (12), 66–75 (2022) [Google Scholar]
  45. R.O. Imade, and B.A. Ayinde, GC-MS analysis and invitro cytotoxic activity of Ocimum basilicum (Lamiaceae) volatile oil and active fraction composed majorly of estragole. Journal of Pharmacy & Bioresources, 19(3), 143–152 (2022). https://doi.org/10.4314/ipb.v19i3.3 [CrossRef] [Google Scholar]
  46. J. Łyczko, K. Masztalerz, L. Lipan, and K. Lech, A.A. Carbonell-Barrachina, and A. Szumny, Chemical determinants of dried Thai basil (O. basilicum var. thyrsiflora) aroma quality. Ind Crops Prod. 155, 112769 (2020). https://doi.org/10.1016/Undcrop.2020.112769 [CrossRef] [Google Scholar]
  47. S. Kholiya, A. Punetha, K.T. Venkatesha, D. Kumar, R.K. Upadhyay, and R.C. Padalia, Essential oil yield and composition of Ocimum basilicum L. at different phenological stages, plant density and post-harvest drying methods. S. Afr. J. Bot. 151, 919–925 (2022). https://doi.org/10.1016/i.saib.2022.11.019 [CrossRef] [Google Scholar]
  48. W. Mucha, and D. Witkowska, The applicability of essential oils in different stages of production of animal-based foods. J. Molecules. 26(13), 3798 (2021). https://doi.org/10.3390/molecules26133798 [CrossRef] [Google Scholar]
  49. N.H. Qui Recent advances ofáusing organic acids and essential oils asáin-feed antibiotic alternative inápoultry feeds. Czech J. Anim. Sci. 68(4), 141–160 (2023). https://doi.org/10.17221/99/2022-CJAS [CrossRef] [Google Scholar]
  50. F. Haddouchi, H. Lazouni, A. Meziane, and A. Benmansour, Etude physicochimique et microbiologique de l’huile essentielle de T. fontanesii Boiss & Reut. Afr. Sci. Rev. Int. Sci. Technol. (5), 2 (2010). https://doi.org/10.4314/afsci.v5i2.61738. [Google Scholar]
  51. S. Ngom, M. Diop, M. Mbengue, F. Faye, and J. M. Kornprobst, Composition chimique et propriétés antibactériennes des huiles essentielles d’ Ocimum basilicum et d’Hyptis suaveolens (L.) Poit récoltés dans la region de Dakar au Senegal, (2014) [Google Scholar]
  52. G. Karim, M. A. Meshgi, R. K. Ababil, and S. Bokaie, Antimicrobial Effect of M. spicata and Mentha pulegium Essential Oils in Two Storage Temperatures on the Survival of Debaryomyces hansenii in Iranian Doogh. Appl. Food Biotechnol. 3(2), 99–104 (2016). https://doi.org/10.22037/afb.v3i2.10886. [Google Scholar]
  53. W. Dhifi, S. Bellili, S. Jazi, N. Bahloul, and W. Mnif, Essential Oils Chemical Characterization and Investigation of Some Biological Activities. J. Crit. Rev. (Basel), 3(4), 25 (2016). https://doi.org/10.3390/medicines3040025. [Google Scholar]
  54. P. Satyal, B. L. Murray, R. L. McFeeters, and W. N. Setzer, Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods. 5(4) 70, Oct. (2016). https://doi.org/10.3390/foods5040070. [CrossRef] [Google Scholar]
  55. B. M. Nadjib and F. Amine, Methodes d’extraction et de distillation des huiles essentielles: revue de litterature, (2019) [Google Scholar]
  56. E. Valarezo, S. Ojeda-Riascos, L. Cartuche, N. Andrade-González, I. González-Sánchez, and M. A. Meneses, Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants (Basel), 9(12), 1658 (2020). https://doi.org/10.3390/plants9121658. [PubMed] [Google Scholar]
  57. C. Cabral and A. Reyes, Validation of Downscaled Analyses of Acid and Ester Values of Essential Oils. (2009) [Google Scholar]
  58. H. a Lazouni, A. Benmansour, S. a Taleb-bendiab, and D. Chabane Sari, Composition des constituants des huiles essentielles et valeurs nutritives du Foeniculum vulgare Mill. Sci. Tech. Biotech. 25, 7–12 (2007) [Google Scholar]
  59. S.K. Yadav, Physiochemical Properties of Essential Oils and Applications, in Essential Oils, Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade, Eds., Rijeka: IntechOpen, (2022). https://doi.org/10.5772/intechopen.104112. [Google Scholar]
  60. H.J. Dorman and S.G. Deans, Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88(2), 308–316 (2000). https://doi.org/10.1046/i.1365-2672.2000.00969.x. [CrossRef] [PubMed] [Google Scholar]
  61. A. I. Hussain, F. Anwar, S. T. Hussain Sherazi, and R. Przybylski, Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 108(3), 986–995 (2008). https://doi.org/10.1016/j.foodchem.2007.12.010. [CrossRef] [Google Scholar]
  62. S. Burt, Essential oils: their antibacterial properties and potential applications in foods-- a review, Int. J. Food Microbiol. 94(3), 223–253 (2004). https://doi.org/10.1016/Uifoodmicro.2004.03.022 [CrossRef] [Google Scholar]
  63. L. Thompson, Improving the creativity of organizational work groups, Acad. Manag. Perspect. 17(1), 96–109 (2003). https://doi.org/10.5465/ame.2003.9474814. [CrossRef] [Google Scholar]
  64. J. Ju, Y. Xie, H. Yu, Y. Guo, Y. Cheng, H. Qian, and W. Yao, Synergistic interactions of plant essential oils with antimicrobial agents: a new antimicrobial therapy. Crit. Rev. Food Sci. Nutr. 62(7), 1740–1751 (2022). https://doi.org/10.1080/10408398.2020.1846494. [CrossRef] [PubMed] [Google Scholar]
  65. K. Sharma, S. Guleria, V. K. Razdan, and V. Babu, Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind. Crops Prod. (154), 112569 (2020). https://doi.org/10.1016/Undcrop.2020.112569. [CrossRef] [Google Scholar]
  66. M. Soković, J. Glamočlija, P.D. Marin, D. Brkić, and L.J.L.D. van Griensven, Antibacterial Effects of the Essential Oils of Commonly Consumed Medicinal Herbs Using an In Vitro Model. J. Molecules. 15(11), 11 (2010). https://doi.org/10.3390/molecules15117532. [Google Scholar]
  67. G.M. Hamad, N.M. Abdelmotilib, S. Mostafa Abdel-Fattah, and A.M. Zeitoun, Anti-Escherichia coli O157:H7 as Natural Preservative to Control and Prevent Food Contamination in Meat and Fish Products. Pak. J. Biol. Sci. 23(5), 674–684 (2020). https://doi.org/10.3923/pibs.2020.674.684. [CrossRef] [Google Scholar]
  68. E. J. Quinto, I. Caro, L. H. Villalobos-Delgado, J. Mateo, B. De-Mateo-Silleras, and M. P. Redondo-Del-Río, Food Safety through Natural Antimicrobials, J. Antibiot. 8(4), 4 (2019). https://doi.org/10.3390/antibiotics8040208. [CrossRef] [Google Scholar]
  69. S.A. Ojeda-Piedra, M.L. Zambrano-Zaragoza, R.M. González-Reza, C. I. García-Betanzos, S.A. Real-Sandoval, and D. Quintanar-Guerrero, Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage. J. Molecules. 27(23), 23 (2022). https://doi.org/10.3390/molecules27238187. [Google Scholar]
  70. S. Smaoui, H. BenHlima, L. Tavares, K. Ennouri, O. Ben Braiek, L. Mellouli, S. Abdelkafi, A. Mousavi Khaneghah, Application of essential oils in meat packaging: A systemic review of recent literature. Food Control. (132), 108566 (2022). https://doi.org/10.1016/i.foodcont.2021.108566. [CrossRef] [Google Scholar]
  71. M. Angane, S. Swift, K. Huang, C.A. Butts, and S.Y. Quek, Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods. 11(3) 464 (2022). https://doi.org/10.3390/foods11030464. [CrossRef] [Google Scholar]
  72. A. K. Pandey, P. Kumar, P. Singh, N. N. Tripathi, and V. K. Bajpai, Essential Oils: Sources of Antimicrobials and Food Preservatives, Front. microbiol. 7, (2017). https://doi.org/10.3389/fmicb.2016.02161 [CrossRef] [Google Scholar]
  73. D. R. Reis, A. Ambrosi, and M. D. Luccio, Encapsulated essential oils: A perspective in food preservation. J. Future Foods. (5), 100126 (2022). https://doi.org/10.1016/i.fufo.2022.100126. [CrossRef] [Google Scholar]
  74. Z. Zeng, S. Zhang, H. Wang, and X. Piao, Essential oil and aromatic plants as feed additives in non-ruminant nutrition: a review. J. Anim. Sci. Biotechnol. 6(1), 7 (2015). https://doi.org/10.1186/s40104-015-0004-5. [CrossRef] [Google Scholar]
  75. A. Brenes and E. Roura, Essential oils in poultry nutrition: Main effects and modes of action, Animal Feed Science and Technology, 158(1), 1–14, Jun. (2010). https://doi.org/10.1016/i.anifeedsci.2010.03.007. [Google Scholar]
  76. PSA, PSA ANNUAL MEETING. J. Phycol. 47(2), 217 (2011). https://doi.org/10.1111/j.1529-8817.2011.00984.x. [CrossRef] [Google Scholar]
  77. J. Rao, B. Chen, D.J. McClements, Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annu. rev. food sci. technol., 10, 365–387 (2019). https://doi.org/10.1146/annurev-food-032818-121727 [CrossRef] [PubMed] [Google Scholar]
  78. Q. He, L. Zhang, L. Song, X. Zhang, D. Liu, Y. Hu, and M. Guo, Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism. Lwt-Food Sci. Tech. (147), 111574 (2021). https://doi.org/10.1016/j.lwt.2021.111574 [CrossRef] [Google Scholar]
  79. L. Lins, S. DalMaso, B. Foncoux, A. Kamili, Y. Laurin, M. Genva, H. Jijakli, C. De Clerck, M.L. Fauconnier, M. Deleu, Insights into the relationships between herbicide activities, molecular structure and membrane interaction of cinnamon and citronella essential oils components. Int. J. Mol. Sci. 20(16), 4007 (2019). https://doi.org/10.3390/ijms20164007 [CrossRef] [Google Scholar]
  80. A. Martínez, M. Manrique-Moreno, M.C. Klaiss-Luna, E. Stashenko, G. Zafra, and C. Ortiz, Effect of essential oils on growth inhibition, biofilm formation and membrane integrity of Escherichia coli and Staphylococcus aureus. Antibiotics. 10(12), 1474 (2021). https://doi.org/10.3390/antibiotics10121474 [CrossRef] [Google Scholar]
  81. P.S.X. Yap, K. Yusoff, S.H.E. Lim, C.M. Chong, and K.S. Lai, Membrane disruption properties of essential oils—A double-edged sword?. Processes. 9(4), 595 (2021). https://doi.org/10.3390/pr9040595 [CrossRef] [Google Scholar]
  82. J. Sharifi-Rad, A. Sureda, G.C. Tenore, M. Daglia, M. Sharifi-Rad, M. Valussi, R. Tundis, M. Sharifi-Rad, M.R. Loizzo, A.O. Ademiluyi, R. Sharifi-Rad, S.A. Ayatollahi, M. Iriti, Biological activities of essential oils: From plant chemoecology to traditional healing systems. J. Molecules. 22(1), 70 (2017). https://doi.org/10.3390/molecules22010070 [CrossRef] [Google Scholar]
  83. S. Andrade-Ochoa, K.F. Chacón-Vargas, L.E. Sánchez-Torres, B.E. Rivera-Chavira, B. Torres, G.V. Nevárez-Moorillón, Differential antimicrobial effect of essential oils and their main components: Insights based on the cell membrane and external structure. Membranes. 11(6), 405 (2021). https://doi.org/10.3390/membranes11060405 [CrossRef] [Google Scholar]
  84. M.L. Faleiro, The mode of antibacterial action of essential oils. Science against microbial pathogens: communicating current research and technological advances, (2), 1143–1156 (2011) [Google Scholar]
  85. F. Nazzaro, F. Fratianni, L. DeMartino, R. Coppola, and V. De Feo, Effect of essential oils on pathogenic bacteria. J. Pharm., 6(12), 1451–1474 (2013). https://doi.org/10.3390/ph6121451 [Google Scholar]
  86. F. Guo, Q. Chen, Q. Liang, M. Zhang, W. Chen, H. Chen, Y. Yun, Q. Zhong and W. Chen, Antimicrobial activity and proposed action mechanism of linalool against Pseudomonas fluorescens. Front. microbiol. 12, 562094 (2021). https://doi.org/10.3389/fmicb.2021.562094 [CrossRef] [Google Scholar]
  87. R. He, Q. Zhong, W. Chen, M. Zhang, J. Pei, H. Chen, and W. Chen, Antimicrobial mechanism of linalool against Brochothrix thermosphacta and its application on chilled beef. Int. Food Res. J. (157), 111407 (2022). https://doi.org/10.1016/j.foodres.2022.111407 [CrossRef] [Google Scholar]
  88. A. Li, C. Shi, S. Qian, Z. Wang, S. Zhao, Y. Liu, and Z. Xue, Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability. Microb. Pathog. (168), 105574 (2022). https://doi.org/10.1016/j.micpath.2022.105574 [CrossRef] [Google Scholar]
  89. S. García-Salinas, H. Elizondo-Castillo, M. Arruebo, G. Mendoza, and S. Irusta, Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. J. Molecules. 23(6), 1399 (2018). https://doi.org/10.3390/molecules23061399 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.