Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 01023
Number of page(s) 7
Section Natural & Environmental Resources Management
DOI https://doi.org/10.1051/e3sconf/202452701023
Published online 24 May 2024
  1. T. Donia and A. Khamis, Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges, Environ. Sci. Pollut. Res. 28, 34121–34153 (2021). https://doi.org/10.1007/s11356-021-14109-9 [Google Scholar]
  2. E. Gusev and A. Sarapultsev, Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes, Int. J. Mol. Sci. 24, 7910 (2023). https://doi.org/10.3390/ijms24097910 [Google Scholar]
  3. P. Kong, Z.-Y. Cui, X.-F. Huang, D.-D. Zhang, R.-J. Guo, and M. Han, Inflammation and atherosclerosis: Signalling pathways and therapeutic intervention, Signal transduct. Target. Ther. 7, 131 (2022). https://doi.org/10.1038/s41392-022-00955-7 [Google Scholar]
  4. N. Calabriso, E. Scoditti, M. Massaro, M. Pellegrino, C. Storelli, I. Ingrosso, et al., Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression, Eur. J. Nutr. 55, 477–489 (2016). https://doi.org/10.1007/s00394-015-0865-6 [Google Scholar]
  5. R. Bahramsoltani, F. Ebrahimi, M. H. Farzaei, A. Baratpourmoghaddam, P. Ahmadi, P. Rostamiasrabadi, et al., Dietary polyphenols for atherosclerosis: A comprehensive review and future perspectives, Crit. Rev. FoodSci. Nutr. 59, 114–132 (2019).https://doi.org/10.1080/10408398.2017.1360244 [Google Scholar]
  6. S. U. Qadir and V. Raja, Herbal medicine: Old practice and modern perspectives, in Phytomedicine, ed: Elsevier, (2021), 149–180 https://doi.org/10.1016/B978-0-12-824109-7.00001-7 [CrossRef] [Google Scholar]
  7. E. M. Williamson, Synergy and other interactions in phytomedicines, Phytomedicine. 8, 401–409 (2001). https://doi.org/10.1078/0944-7113-00060 [Google Scholar]
  8. S. Amrani, H. Harnafi, D. Gadi, H. Mekhfi, A. Legssyer, M. Aziz, et al., Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract, J. Ethnopharmacol. 125, 157–162 (2009). https://doi.org/10.1016/j.jep.2009.05.043 [Google Scholar]
  9. K. W. Singletary, Basil: A brief summary of potential health benefits, Nutr. Today. 53, 92–97 (2018). DOI: 10.1097/NT.0000000000000267 [Google Scholar]
  10. B. Prinsi, S. Morgutti, N. Negrini, F. Faoro, and L. Espen, Insight into composition of bioactive phenolic compounds in leaves and flowers of green and purple Basil, Plants. 9, 22 (2020). https://doi.org/10.3390/plants9010022 [Google Scholar]
  11. W. Dahmani, N. Elaouni, A. Abousalim, Z. L. E. Akissi, A. Legssyer, A. Ziyyat, et al., Exploring carob (Ceratonia siliqua L.): A Comprehensive assessment of its characteristics, ethnomedicinal uses, phytochemical aspects, and pharmacological activities, Plants. 12, 3303 (2023). https://doi.org/10.3390/plants12183303 [Google Scholar]
  12. H. Zunft, W. Lüder, A. Harde, B. Haber, H. Graubaum, C. Koebnick, et al., Carob pulp preparation rich in insoluble fibre lowers total and LDL cholesterol in hypercholesterolemic patients, Eur. J. Nutr. 42, 235–242 (2003). https://doi.org/10.1007/s00394-003-0438-y [Google Scholar]
  13. I. Touiss, M. Harnafi, S. Khatib, O. Bekkouch, K. Ouguerram, S. Amrani, et al., Rosmarinic acid-rich extract from Ocimum basilicum L. decreases hyperlipidemia in high fat diet-induced hyperlipidemic mice and prevents plasma lipid oxidation, Physiol. Pharmacol. 23, 197–207 (2019). http://ppj.phypha.ir/article-1-1461-en.html [Google Scholar]
  14. O. Bekkouch, M. Harnafi, I. Touiss, S. Khatib, H. Harnafi, C. Alem, et al., In vitro antioxidant and in vivo lipid-lowering properties of Zingiber officinale crude aqueous extract and methanolic fraction: A follow-up study, Evid.-Based Complement. Alternat. Med. 2019 (2019). https://doi.org/10.1155/2019/9734390 [Google Scholar]
  15. M. Harnafi, O. Bekkouch, I. Touiss, S. Khatib, I. Mokhtari, D. Milenkovic, et al., Phenolic-Rich Extract from Almond (Prunus dulcis) Hulls Improves Lipid Metabolism in Triton WR-1339 and High-Fat Diet-Induced Hyperlipidemic Mice and Prevents Lipoprotein Oxidation: A Comparison with Fenofibrate and Butylated Hydroxyanisole, Prev. Nutr. Food Sci. 25, 254 (2020). DOI: 10.3746/pnf.2020.25.3.254 [Google Scholar]
  16. N. Jisha, A. Vysakh, V. Vijeesh, and M. Latha, Anti-inflammatory efficacy of methanolic extract of Muntingia calabura L. leaves in Carrageenan induced paw edema model, Pathophysiology, 26, 323–330 (2019). https://doi.org/10.1016/j.pathophys.2019.08.002 [CrossRef] [PubMed] [Google Scholar]
  17. J. Kou, M. Si, G. Dai, Y. Lin, and D. Zhu, Antiinflammatory activity of Polygala japonica extract, Fitoterapia, 11, 411–415 (2006). https://doi.org/10.1016/j.fitote.2006.04.011 [CrossRef] [PubMed] [Google Scholar]
  18. M. Ramchoun, K. Sellam, H. Harnafi, C. Alem, M. Benlyas, F. Khallouki, et al., Investigation of antioxidant and antihemolytic properties of Thymus satureioides collected from Tafilalet Region, south–east of Morocco, Asian Pac. J. Trop. Biomed. 5, 93100 (2015). https://doi.org/10.1016/S2221-1691(15)30151-9 [Google Scholar]
  19. I. Leouifoudi, H. Harnafi, and A. Zyad, Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities, Adv. Pharmacol. Pharm. Sci. 2015 (2015). https://doi.org/10.1155/2015/714138 [Google Scholar]
  20. M. Harnafi, I. Touiss, S. Khatib, O. Bekkouch, M. Rouis, K. Ouguerram, et al., L'extrait phénolique de l'enveloppe charnue d'amande (Prunus amygdalus L.) restaure le métabolisme lipidique chez la souris hyperlipidémique et prévient l'oxydation des lipoprotéines plasmatiques, Phytothérapie, 19, 163–170 (2021). https://doi.org/10.3166/phyto-2019-0207 [CrossRef] [Google Scholar]
  21. A. Minhas, A. Khan, and G. Miana, Anti-inflammatory actions of Berberis lycium (whole plant) in acute and chronic models of inflammation in mice, JAPS, J. Anim. Plant Sci. 28, 754–760 (2018). https://api.semanticscholar.org/CorpusID:13845182 [Google Scholar]
  22. A. Moschona, K. D. Kyriakidis, A. D. Kleontas, and M. Liakopoulou-Kyriakides, Comparative study of natural phenolic acids and flavonols as antiplatelet and anti-inflammatory agents, Grant Med. J. 2, 057–066 (2017). [Google Scholar]
  23. K. Chojnacka and U. Lewandowska, Inhibition of pro-inflammatory cytokine secretion by polyphenol-rich extracts in macrophages via NF-κB pathway, Food Rev. Int. 39, 5459–5478 (2023). https://doi.org/10.1080/87559129.2022.2071936 [Google Scholar]
  24. G. D. Gamaro, E. Suyenaga, M. Borsoi, J. Lermen, P. Pereira, and P. Ardenghi, Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats, Int. Sch. Res. Notices. 2011 (2011). https://doi.org/10.5402/2011/451682 [Google Scholar]
  25. S. Han, S. Yang, Z. Cai, D. Pan, Z. Li, Z. Huang, et al., Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells, Drug Des. Devel. Ther. 2695–2703 (2015). https://doi.org/10.2147/DDDT.S82342 [Google Scholar]
  26. C.-X. Zhang, Z.-R. Dai, and Q.-X. Cai, Antiinflammatory and anti-nociceptive activities of Sipunculus nudus L. extract, J. Ethnopharmacol. 137, 1177–1182 (2011). https://doi.org/10.1016/j.jep.2011.07.039 [Google Scholar]
  27. M. Eddouks, D. Chattopadhyay, and N. A. Zeggwagh, Animal models as tools to investigate antidiabetic and anti-inflammatory plants, Evid.-Based Complement. Alternat. Med. 2012, 1–14, (2012). https://doi.org/10.1155/2012/142087 [Google Scholar]
  28. M. Mittal, M. R. Siddiqui, K. Tran, S. P. Reddy, and A. B. Malik, Reactive oxygen species in inflammation and tissue injury, Antioxid. Redox signal. 20, 1126–1167 (2014). https://doi.org/10.1089/ars.2012.5149 [Google Scholar]
  29. M. Torzewski, The initial human atherosclerotic lesion and lipoprotein modification—a deep connection, Int. J. Mol. Sci. 22, 11488 (2021). https://doi.org/10.3390/ijms222111488 [Google Scholar]
  30. D. S. Simpson and P. L. Oliver, ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease, Antioxidants. 9, 743 (2020). https://doi.org/10.3390/antiox9080743 [Google Scholar]
  31. W. S. Darwish, A. E. S. Khadr, M. A. E. N. Kamel, M. A. Abd Eldaim, I. E. T. El Sayed, H. M. Abdel-Bary, et al., Phytochemical characterization and evaluation of biological activities of egyptian carob pods (Ceratonia siliqua L.) aqueous extract: In vitro study, Plants. 10, 2626 (2021). https://doi.org/10.3390/plants10122626 [Google Scholar]
  32. H. Torun, F. A. Ayaz, N. Colak, J. Grúz, and M. Strnad, Phenolic acid content and free radical-scavenging activity of two differently processed Carob tree (Ceratonia siliqua L.) Pod, Sci. Res. 4, 7 (2013). DOI: 10.4236/fns.2013.45070 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.