Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 02002
Number of page(s) 6
Section Environmental Pollution & Health Risks
DOI https://doi.org/10.1051/e3sconf/202452702002
Published online 24 May 2024
  1. L. Floroian, A. Lungu, M. Badea, Study on the Effect of Noise Pollution on Public Health. Med. Sci. 15, 1–8 (2022). https://doi.org/10.31926/but.ms.2022.64.15.1.1 [Google Scholar]
  2. M. Darche, F. Lopez-Caballero, B. Tie, Modal analysis of waveguide for the study of frequency bandgaps of a bounded periodic medium. J. Sound. Vib. 572, 118158 (2024). https://doi.org/10.1016/j.jsv.2023.118158 [CrossRef] [Google Scholar]
  3. I. Antraoui, A. Khettabi, Properties of defect modes in a finite periodic structure with branched open resonators. Mater. Today. Proc. 27, 3132–3138 (2020). https://doi.org/10.1016/j.matpr.2020.04.012 [CrossRef] [Google Scholar]
  4. A. Khettabi, D. Bria, M. Elmalki, New approach applied to analyzing a periodic Helmholtz resonator. J. Mater. Environ. Sci. 8, 816–824 (2017) [Google Scholar]
  5. A. Khettabi, M. Elmalki, Analytical study by transfer matrix and Green's method of a periodic lattice formed by dual Helmholtz resonators (DHR), in Proceedings of the International Conference on Electrical and Information Technologies, ICEIT, Rabat, Morocco, November IEEE 15–18, 1–3 (2017). https://doi.org/10.1109/EITech.2017.8255268 [Google Scholar]
  6. A. Hvatov, S. Sorokin, Free vibrations of finite periodic structures in pass-and stop-bands of the counterpart infinite waveguides. J. Sound. Vib. 347, 200–217 (2015). https://doi.org/10.1016/j.jsv.2015.03.003 [CrossRef] [Google Scholar]
  7. C.E. Bradley, Objective measures of listener envelopment. J. Acoust. Soc. Am. 98, 2590–2597 (1994). https://doi.org/10.1121/L413225 [Google Scholar]
  8. C.E. Bradley, Time harmonic acoustic Bloch wave propagation in periodic waveguides. Part I. Theory. J. Acoust. Soc. Am. 96, 1844–1853 (1994). https://doi.org/10.1121/L410196 [CrossRef] [Google Scholar]
  9. H. Arslan, M. Ranjbar, E. Secgin, V. Celik, Theoretical and experimental investigation of acoustic performance of multi-chamber reactive silencers. Appl. Acoust. 157, 106987 (2020). https://doi.Org/10.1016/i.apacoust.2019.07.035 [CrossRef] [Google Scholar]
  10. Solntseva, W. De Roeck, W. Desmet, Numerical methodologies to predict the noise generation and propagation mechanisms in multiple expansion chambers. in Proceedings of the 14th AIAA/CEAS Aeroacoustics Conference, 29th AIAA Aeroacoustics Conference, Vancouver, British, Columbia, Canada, May, 5–7, 2949 (2008). https://doi.org/10.2514/6.2008-2949 [Google Scholar]
  11. A. Selamet, F.D. Denia, A.J. Besa, Acoustic behavior of circular dual-chamber mufflers. J. Sound. Vib. 265, 967–985 (2003). https://doi.org/10.1016/S0022-460X(02)01258-0 [CrossRef] [Google Scholar]
  12. Tong, X. Yu, J. Pan, T. Graf, Analysis of the interaction between cascade sub-chambers using the acoustic scattering matrix method, in proceedings of the International Congress and Exposition on Noise Control Engineering, San Francisco, California, USA, August 9–12 (2015) [Google Scholar]
  13. X. Shi, Sound attenuation performance of periodic expansion chamber mufflers, in Proceedings of the IOP Conference Series: Earth and Environmental Science, IOP Publishing, 531, 012013 (2020). https://doi.org/10.1088/1755-1315/531/1/012013 [CrossRef] [Google Scholar]
  14. J. Yin, M. Ruzzene, J. Wen, D. Yu, L. Cai, L. Yue, Band transition and topological interface modes in 1D elastic phononic crystals. Sci. Rep. 8, 6806 (2018). https://doi.org/10.1038/s41598-018-24952-5 [CrossRef] [Google Scholar]
  15. C. Doolan, A review of wind turbine noise perception, annoyance and low frequency emission. Wind. Eng. 37, 97–104 (2013). https://doi.org/10.1260/0309-524X.37.1 [CrossRef] [Google Scholar]
  16. N. K. Singh, P. A. Rubini, Large eddy simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers. Appl. Acoust. 98, 6–19 (2015). https://doi.org/10.1016/i.apacoust.2015.04.015 [CrossRef] [Google Scholar]
  17. A.M. Goto, J.M.C. DosSantos, Sound attenuation of periodic micro-perforated chamber mufflers using the spectral transfer matrix method, in Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, CILAMCE 2019, ABMEC, Natal/RN, Brazil, November 11–14 (2019) [Google Scholar]
  18. X. Shi, C.M Mak, Sound attenuation of a periodic array of micro-perforated tube mufflers. Appl. Acoust. 115, 15–22 (2017). https://doi.org/10.1016/i.apacoust.2016.08.017 [CrossRef] [Google Scholar]
  19. X.L. Gai, T. Xing, Z.X. Kang, X.H. Li, B. Zhang, Z.N. Cai, F. Wang, X.W. Guan, Study on sound insulation performance of the periodic arrangement expansion chambers structure with built-in micro-perforated panel. Appl. Acoust. 161, 107187 (2020). https://doi.org/10.1016/i.apacoust.2019.107187 [CrossRef] [Google Scholar]
  20. N. Aközbek, N. Mattiucci, M.J. Bloemer, M. Sanghadasa, G. D'Aguanno, Manipulating the extraordinary acoustic transmission through metamaterial-based acoustic band gap structures. Appl. Phys. Lett. 104, (2014). https://doi.org/10.1063/L4873391 [Google Scholar]
  21. N. Regalado-Rodríguez, C. Militello, Comparative study of the effects of increasing heat transfer area within compression and expansion chambers in combination with modified pistons in Stirling engines. A simulation approach based on CFD and a numerical thermodynamic model. Energy. Convers. Manag. 268, 115930 (2022). https://doi.org/10.1016/i.enconman.2022.115930 [Google Scholar]
  22. X. Zhang, Y. Li, Y. Wang, Z. Jia, Y. Luo, Narrowband filter design of phononic crystals with periodic point defects via topology optimization. Int. J. Mech. Sci. 212, 106829 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106829 [CrossRef] [Google Scholar]
  23. I. Antraoui, A. Khettabi, Defect modes in one-dimensional periodic closed resonators, in Proceedings of the International Conference on Integrated Design and Production, CPI, Springer International Publishing, Fez, Morocco, October 14–16 (2019), 438–445 (2021). https://doi.org/10.1007/978-3-030-62199-539 [Google Scholar]
  24. I. Antraoui, A. Khettabi, Study of the defect modes of a finite one-dimensional periodic structure of three different waveguides. Mater. Today. Proc. 31, S61-S68 (2020). https://doi.org/10.1016/i.matpr.2020.06.064 [CrossRef] [Google Scholar]
  25. H. Zhang, B. Liu, J. Liu, X. Han, Topological waveguide states with adjustable width in elastic heterostructures with periodic semi-circular holes. Results. Phys. 35, 105416 (2022). https://doi.org/10.1016/i.rinp.2022.105416 [CrossRef] [Google Scholar]
  26. Z.A. Zaky, S. Alamri, E.I. Zohny, A.H. Aly, Simulation study of gas sensor using periodic phononic crystal tubes to detect hazardous greenhouse gases. Sci. Rep. 12, 21553 (2022). https://doi.org/10.1007/s13204-021-02236-1 [CrossRef] [Google Scholar]
  27. M.G. Daher, S.A. Taya, I. Colak, O.M. Ramahi, Design of a novel optical sensor for the detection of waterborne bacteria based on a photonic crystal with an ultra-high sensitivity. Opt. Quantum. Electron. 54, 108 (2022). https://doi.org/10.1007/s11082-021-03486-7 [CrossRef] [Google Scholar]
  28. A. Khettabi, I. Antraoui, Study of a finite network of one-dimensional periodic expansion chambers by the transfer matrix method and Sylvester theorem, in Proceedings of the AIP Conference Proceedings, AIP, Publishing, Fez, Morocco, October 2074, 26–27 (2019). https://doi.org/10.1063/L5090620 [Google Scholar]
  29. M. El Malki, A. Khettabi, Application of the interface response theory to a periodical expansion chambers. In in Proceedings of the AIP Conference Proceedings, AIP, Publishing, Fez, Morocco, October 2074, 26–27 (2019). https://doi.org/10.1063/L5090642 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.