Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 02004
Number of page(s) 5
Section Environmental Pollution & Health Risks
DOI https://doi.org/10.1051/e3sconf/202452702004
Published online 24 May 2024
  1. D.S. McLusky and M. Elliott, 'Transitional waters: A new approach, semantics or just muddying the waters?', Estuarine, Coastal and Shelf Science. 71, 359 (2007). https://doi.org/10.1016/j.ecss.2006.08.025 [CrossRef] [Google Scholar]
  2. B. Kjerfve, Chapter 1 Coastal Lagoons', in Elsevier Oceanography Series, vol. 60, B. Kjerfve, Ed., in Coastal Lagoon Processes, Elsevier. 60,1-8 (1994). https://doi.org/10.1016/S0422-9894(08)70006-0. [Google Scholar]
  3. E.C.F. Bird, Chapter 2: Physical Setting and Geomorphology of Coastal Lagoons. In Elsevier Oceanography Series; Kjerfve, B., Ed.; Coastal Lagoon Processes; Elsevier, 60 (1994). https://doi.org/10.1016/S0422-9894(08)70007-2.4. [Google Scholar]
  4. C. Aliaume, T. DoChi, P. Viaroli, and J.M. Zaldívar, Coastal Lagoons of Southern Europe: Recent Changes and Future Scenarios. Transitional Waters Monographs 1, 1 (2007). https://doi.org/10.1285/i18252273v1n1p1. [Google Scholar]
  5. Q. Liu, F. Wang, F. Meng, L. Jiang, G. Li, and R. Zhou, Assessment of Metal Contamination in Estuarine Surface Sediments from Dongying City, China: Use of a Modified Ecological Risk Index. Mar. Pollut. Bull. 126, 293 (2018). https://doi.org/10.1016/j.marpolbul.2017.11.017. [CrossRef] [Google Scholar]
  6. S. Chakraborty, T. Bhattacharya, G. Singh, and J. P. Maity, Benthic Macroalgae as Biological Indicators of Heavy Metal Pollution in the Marine Environments: A Biomonitoring Approach for Pollution Assessment. Ecotoxicol. Environ. Saf. 100, 61 (2014). https://doi.org/10.1016/j.ecoenv.2013.12.003. [CrossRef] [Google Scholar]
  7. Y. Yang, Z. Chai, Q. Wang, W. Chen, Z. He, and S. Jiang, Cultivation of Seaweed Gracilaria in Chinese Coastal Waters and Its Contribution to Environmental Improvements, Algal Res. 9, 236 (2015). https://doi.org/10.1016/j.algal.2015.03.017. [CrossRef] [Google Scholar]
  8. G.S. Marinho, S.L. Holdt, M.J. Birkeland, and I. Angelidaki, Commercial Cultivation and Bioremediation Potential of Sugar Kelp, Saccharina Latissima, in Danish Waters. J. Appl. Phycol. 27, 1963 (2015). https://doi.org/10.1007/s10811-014-0519-8. [CrossRef] [Google Scholar]
  9. A. Neori, T. Chopin, M. Troell, A. H. Buschmann, G.P. Kraemer, C. Halling, M. Shpigel, and C. Yarish, Integrated Aquaculture: Rationale, Evolution and State of the Art Emphasizing Seaweed Biofiltration in Modern Mariculture, Aquaculture 231, 361 (2004). https://doi.org/10.1016/j.aquaculture.2003.11.015. [CrossRef] [Google Scholar]
  10. A. Flores-Moya, D. Moreno, J. De la Rosa, M. Altamirano, and E. Bañares-España, The Marine Forests from the Alboran Sea, Alboran Sea -Ecosystems and Marine Resources 247 (2021). https://doi.org/10.1007/978-3-030-65516-78. [Google Scholar]
  11. M. Baghour, Effect of seaweeds in phyto-remediation. In, Biotechnological Applications of Seaweeds. Nova Publishers (2017) [Google Scholar]
  12. K. Ben Chekroun and M. Baghour. The Role of Algae in Phytoremediation of Heavy Metals: A Review. J. Mater. Environ. Sci. 4, 873 (2013) [Google Scholar]
  13. M.K. Bloundi, Etude Géochimique de La Lagune de Nador (Maroc Oriental): Impacts Des Facteurs Anthropiques, Thèse de doctorat, Strasbourg 1, 2005. https://www.theses.fr/2005STR1GEO6 (accessed 2022–06-05). [Google Scholar]
  14. F. Maicu, B. Abdellaoui, M. Bajo, A. Chair, K. Hilmi, and G. Umgiesser, Modelling the Water Dynamics of a Tidal Lagoon: The Impact of Human Intervention in the Nador Lagoon (Morocco). Cont. Shelf Res. 228, 104535 (2021). https://doi.org/10.1016/j.csr.2021.104535. [CrossRef] [Google Scholar]
  15. L. Pereira, Seaweed Flora of the European North Atlantic and Mediterranean, (Springer Handbook of Marine Biotechnology, 2015). [Google Scholar]
  16. R. Żbikowski, P. Szefer, and A. Latała, Comparison of Green Algae Cladophora Sp. and Enteromorpha Sp. as Potential Biomonitors of Chemical Elements in the Southern Baltic. Sci. Total Environ. 387, 320 (2007). https://doi.org/10.1016/j.scitotenv.2007.07.017. [CrossRef] [Google Scholar]
  17. V. Besada, J. M. Andrade, F. Schultze, and J. J. González, Seaweeds Commercialised for Human Consumption, J. Mar. Syst. 75, 305 (2009). https://doi.org/10.1016/j.jmarsys.2008.10.010. [CrossRef] [Google Scholar]
  18. Z. Peng, Z. Guo, Z. Wang, R. Zhang, Q. Wu, H. Gao, Y. Wang, Z. Shen, S. Lek, and J. Xiao, Species-Specific Bioaccumulation and Health Risk Assessment of Heavy Metal in Seaweeds in Tropic Coasts of South China Sea. Sci. Total Environ. 832, 155031 (2022). https://doi.org/10.1016/j.scitotenv.2022.155031. [CrossRef] [Google Scholar]
  19. U. Arisekar, R. JeyaShakila, R. Shalini, G. Jeyasekaran, B. Sivaraman, and T. Surya, Heavy Metal Concentrations in the Macroalgae, Seagrasses, Mangroves, and Crabs Collected from the Tuticorin Coast (Hare Island), Gulf of Mannar, South India. Mar. Pollut. Bull. 163, 111971 (2021). https://doi.org/10.1016/j.marpolbul.2021.111971. [CrossRef] [Google Scholar]
  20. R. Rajaram, S. Rameshkumar, and A. Anandkumar, A. Health Risk Assessment and Potentiality of Green Seaweeds on Bioaccumulation of Trace Elements along the Palk Bay Coast, Southeastern India, Marine Pollution Bulletin 154, 111069 (2020). https://doi.org/10.1016/j.marpolbul.2020.111069. [CrossRef] [Google Scholar]
  21. H. M. Khairy and M. A. El-Sheikh, Antioxidant Activity and Mineral Composition of Three Mediterranean Common Seaweeds from Abu-Qir Bay, Egypt. Saudi J. Biol. Sci. 22, 623 (2015). https://doi.org/10.1016/j.sjbs.2015.01.010. [CrossRef] [Google Scholar]
  22. M. Y. Roleda, H. Marfaing, N. Desnica, R. Jónsdóttir, J. Skjermo, C. Rebours, and U. Nitschke, Variations in Polyphenol and Heavy Metal Contents of Wild-Harvested and Cultivated Seaweed Bulk Biomass: Health Risk Assessment and Implication for Food Applications. Food Control 95, 121 (2019). https://doi.org/10.1016/j.foodcont.2018.07.031. [CrossRef] [Google Scholar]
  23. A. Rahhou, M. Layachi, M. Akodad, N. El Ouamari, A. Aknaf, A. Skalli, B. Oudra, and M. Baghour, Seasonal and Spatial Fluctuations of Seaweed Biochemical Composition in the Marchica Lagoon (NE, Morocco): A Biological Approach for Assessment of Eutrophication and Bioremediation. Cah. Biol. Mar 64, 283 (2023). https://doi.org/10.21411/CBMA.2069750. [Google Scholar]
  24. J. Terrados and J. Ros, Temporal Variation of the Biomass and Structure of Caulerpa Prolifera (Forsskal) Lamouroux Meadows in the Mar Menor Lagoon (SE Spain), Sci. Mar. 59, 1 (1995) [Google Scholar]
  25. B. Oujidi, M. El Bouch, M. Tahri, M. Layachi, S. Boutoumit, R. Bouchnan, H. Ouahidi, M. Bounakhla, N. El Ouamari, M. Maanan, H. Bazairi, N. Mhammdi, and M. Snoussi, Seasonal and Spatial Patterns of Ecotoxicological Indices of Trace Elements in Superficial Sediments of the Marchica Lagoon Following Restoration Actions during the Last Decade. Diversity 13, 51 (2021). https://doi.org/10.3390/d13020051. [CrossRef] [Google Scholar]
  26. CEVA (Centre d'Etude et de Valorisation des Algues), Synthase règlementaire - algues alimentaires: Revue actualisée du statut réglementaire des algues alimentaires et microalgues en France et en Europe (ingrédients, compléments alimentaires, Novel Food). https://www.ceva-algues.com/document/synthese-reglementaire-algues-alimentaires/ (accessed 2022–09-20). [Google Scholar]
  27. C. Sanchiz, A.M. García-Carrascosa, and A. Pastor, Bioaccumulation of Hg, Cd, Pb and Zn in Four Marine Phanerogams and the Alga Caulerpa Prolifera (Försskal) Lamouroux from the East Coast of Spain. Bot. Mar. 42, 02 (1999). https://doi.org/10.1515/BOT.1999.018. [CrossRef] [Google Scholar]
  28. C. Sanchiz, A.M. García-Carrascosa, and A. Pastor, Heavy Metal Contents in Soft-Bottom Marine Macrophytes and Sediments Along the Mediterranean Coast of Spain, Mar. Ecol. 21, 1 (2000). https://doi.org/10.1046/j.1439-0485.2000.00642.x [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.