Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 02007
Number of page(s) 14
Section Environmental Pollution & Health Risks
DOI https://doi.org/10.1051/e3sconf/202452702007
Published online 24 May 2024
  1. P. Foti, F.V. Romeo, N. Russo, A. Pino, A. Vaccalluzzo, C. Caggia, C.L. Randazzo, Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. Appl. Sci. 11, 7511 (2021). https://doi.org/10.3390/app11167511 [CrossRef] [Google Scholar]
  2. FAOSTAT, Data from Food and Agriculture Organization of United Nations (accessed 28 March 2022). http://www.fao.org/faostat/en/#home [Google Scholar]
  3. J.M. Ochando-Pulido, R. González-Hernández, A. Martinez-Ferez, On the effect of the operating parameters for two-phase olive-oil washing wastewater combined phenolic compounds recovery and reclamation by novel ion exchange resins. Sep. Pur. Tech. 195, 50–59 (2018) [CrossRef] [Google Scholar]
  4. R. Elkacmi, N. Kamil, & B. Mounir, Valorization of olive mill wastewaters in Morocco for the production of biodegradable soap and glycerin. REINNOVA, 1(3), 1–5 (2015) [Google Scholar]
  5. Z. Gueboudji, & K. Kadi, Physicochemical Characterization and Estimation of the Pollution Degree of Olive Oil Mill Wastewaters from the Cold Extraction System and the Traditional System.In book: Wastewat. Ol. Oil. Product. 143–152 (2023) [Google Scholar]
  6. G. El Kafz, E. Cherkaoui, F. Benradi, M. Khamar, A. Nounah, Characterization of Two Olive Mill Wastewater and Its Effect on Fenugreek (Trigonella foenum-graecum) Germination and Seedling Growth. J. Ecol. Eng. 24, 207–217 (2023) [Google Scholar]
  7. S. Shabir, N. Ilyas, Z.R. Mashwani, M.S. Ahmad, M.M. Al-Ansari, L. Al-Humaid, M.S. Reddy, Designing of pretreatment filter technique for reduction of phenolic constituents from olive-mill wastewater and testing its impact on wheat germination. Chemosphere. 299, 134438 (2022) [CrossRef] [Google Scholar]
  8. K. AlMallah, O.J. Asma, N.I. Abu Lail, Olive mills effluent (OME) wastewater post-treatment using activated clay. Sep. Purif. Techn. 20, 225–234 (2000) [CrossRef] [Google Scholar]
  9. M. Achak, F. Elayadi, W. Boumya, Chemical coagulation/flocculation processes for removal of phenolic compounds from olive mill wastewater: a comprehensive review. Am. J. Appl. Sci. 16, 59–91. adapted to Mediterranean area (WATRAMA), 85–89(2019) [CrossRef] [Google Scholar]
  10. R. Aharonov-Nadborny, L. Tsechansky, M. Raviv, E.R. Graber, Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Sci. T. Env. 63, 1115–1123 (2018). Https://doi.org/10.1016/j.Scitotenv.2018.02.270 [CrossRef] [Google Scholar]
  11. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, A. Luch, A Heavy Metal Toxicity and the Environment. Mol. Clin. Env. Tox. 101, 133–164 (2012). https://doi.org/10.1007/978-3-7643-8340-4 6 [CrossRef] [PubMed] [Google Scholar]
  12. A. Ranalli, Olive oil mill effluent: proposals for its utilization and purification. Reference to Italian standards in the field. Olivae, 39, 18–34 (1991) [Google Scholar]
  13. S. Khoufi, A. Louhichi, S. Sayadi, Optimization of Anaerobic Co-Digestion of Olive Mill Wastewater and Liquid Poultry Manure In Batch Condition and Semi-Continuous Jet-Loop Reactor. Bioresource Technol. 182: 67–74 (2015) Available on: https://www.sciencedirect.com/science/article/pii/S0960852415001121?via%3Dihub [CrossRef] [Google Scholar]
  14. A. BenSassia, A. Boularbah B. A. Jaouad C.G. Walker D.A. Boussaid, A comparison of Olive Oil Mill Wastewaters (OMW) from three different processes in Morocco. Process Biochemistry. 41,74-78p (2006). https://doi.org/10.1016/J.PROCBIO.2005.03.074 [CrossRef] [Google Scholar]
  15. S. Dermeche, M. Nadour, C. Larroche, F. Moulti-Mati, P. Michaud, Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochemistry 48 (10), 1532–1552. (2013). https://doi.org/10.1016/j.procbio.2013.07.010 [CrossRef] [Google Scholar]
  16. B. Zghari, P. Doumenq, A. Romane, A. Boukir, GC-MS, FITR and 1H,13C NMR Structural Analysis and Identification of Phenolic Compounds in Olive Mill Wastewater Extracted from Oued Oussefrou Effluent (Beni Mellal-Morocco). J. Mat. Env. Sci. 8(12), 4496–4509. (2017). http://dx.doi.org/10.26872/jmes.2017.8.12.475 [Google Scholar]
  17. M. Achak, A. Hafidi, L. Mandi, N. Ouazzani, Removal of phenolic compounds from olive mill wastewater by adsorption onto wheat bran. Desal. Wat. Treat. 52(13–15), (2014). 2875–2885. https://doi.org/10.1080/19443994.2013.819166 [CrossRef] [Google Scholar]
  18. A. Zahari, A. Tazi, M. Azzi, Optimization of treatment conditions of Olive Oil Mill Wastewater by superoxidant K3FexMnyO8. J. Mat. Env. Sci. 5(2), 484–489 (2014). [Google Scholar]
  19. A. Rouvalis, J. Iliopoulou-Georgudaki, Comparative assessment of olive oil mill effluents from three-phase and two-phase systems, treated for hydrogen production. Bull. Env. Contam. Tox., 85(4), 432–436 (2010). http://dx.doi.org/10.1007/s00128-010-0106-x [CrossRef] [PubMed] [Google Scholar]
  20. K. Tsigkou, A. Terpou, L. Treu, P.G. Kougias, M. Kornaros, Thermophilic anaerobic digestion of olive mill wastewater in an upflow packed bed reactor: Evaluation of 16S rRNA amplicon sequencing for microbial analysis. J. Env. Manag. 1(301), 113853 (2022). http://dx.doi.org/10.1016/j.jenvman.2021.113853. Epub 2021 Oct 5. PMID: 34624575. [CrossRef] [Google Scholar]
  21. A. Boutafda, M. Hafidi, Y. Ouhdouch, E. Pinelli, M. Jemo, L. El Fels, Fungal Strain as Biological Tool to Remove Genotoxicity Effect of Phenolic Compounds from Olive Mill Wastewater. Sustainability. 15(8), 6510 (2023). http://dx.doi.org/10.3390/su15086510 [CrossRef] [Google Scholar]
  22. J.J. Mateo, S. Maicas, Biotechnological activities from yeasts isolated from olive oil mills. Europ. Food Resear. Techn. 240(2), 357–365 (2015). http://dx.doi.org/10.1007/s00217-014-2335-4 [CrossRef] [Google Scholar]
  23. M.G. Charis, Olive mill waste, recent advances for the sustainable management-Academic Press. (2017) [Google Scholar]
  24. T. El Moussaoui, Studies on the activated sludge process crucial parameters controlling olive mill wastewater treatment. Sci. Tot. Env. Sep 10(838), 156455 (2022). http://dx.doi.org/10.1016/j.scitotenv.2022.1564 55. Epub 2022 Jun 6. PMID: 35671855. [CrossRef] [Google Scholar]
  25. S. Sanches, M.C. Fraga, N.A. Silva, P. Nunes, J.G. Crespo, V.J. Pereira, Pilot scale nanofiltration treatment of olive mill wastewater: a technical and economical evaluation. Env. sci. poll. resear inter. 24(4), 3506–3518 (2017). http://dx.doi.org/10.1007/s11356-016-8083-1.Epub 2016 Nov 22. PMID: 27878484. [Google Scholar]
  26. M. Ziati, F. Khemmari, O. Cherifi, F.Y. Didouche, Removal of polyphenols from olive mill wastewater by adsorption on activated carbon prepared from peach stones. Roman. J. Chem., 62 (11), 865–874 (2017) [Google Scholar]
  27. D.T. Sponza, M. Balaban, Treatment of Olive Mill Effluent by Nano-Zinc Oxide-Magnetite. Am. J. Nanotech. Nanomed., cilt. 1, sa. 1, ss. 28-42, (2018) (HakemliDergi) [Google Scholar]
  28. N.A. Oz, A.C.U. Eker, Simultaneous hydrogen production and pollutant removal from olive mill wastewaters using electrohydrolysis process Chemosphere, 232, 296–303 (2019) [Google Scholar]
  29. R. Niazmand, M. Jahani, F. Sabbagh, S. Rezania. Optimization of Electrocoagulation Conditions for the Purification of Table Olive Debittering Wastewater Using Response Surface Methodology. J. Water. 12(6), 1687 (2020). https://doi.org/10.3390/w12061687 [CrossRef] [Google Scholar]
  30. F. Arous, C. Hamdi, S. Kmiha, N. Khammassi, A. Ayari, M. Neifar, A. Jaouani, Treatment of olive mill wastewater through employing sequencing batch reactor: performance and microbial diversity assessment B Biotech, 8, 114 (2018) [Google Scholar]
  31. S.K. Rifi, L.E. Fels, A. Driouich, M. Hafidi, Z. Ettaloui, S. Souabi, Sequencing batch reactor efficiency to reduce pollutant in olive oil mill wastewater mixed with urban wastewater. Inter. J. Env. Sci. Tech. Article, 19 (11), 1136111374 (2022) [Google Scholar]
  32. A. Ranalli, The effluent from olive mills: Proposals for re-use and purification with reference to Italian legislation. Olivae, 39, 26–40p (1991) [Google Scholar]
  33. A. Faggiano, M. DeCarluccio, A. Fiorentino, M. Ricciardi, R. Cucciniello, A. Proto, L. Rizzo, Photo-Fenton like process as polishing step of biologically co-treated olive mill wastewater for phenols removal. Sep. Pur. Tech. 305, 122525 (2023) [CrossRef] [Google Scholar]
  34. A. Amhajji, M. Faid, J.L. Vasel, M. Elyachioui, Polyphénol removal from olive mil wasters by selected mould strains. Grasas Y Aceites. Span. Nation. Resear. Counc. (51) 6, 400–404. (2000). Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/456 [Google Scholar]
  35. A. Yaakoubi, A. Chahlaoui, M. Rahmani, M. Elyachioui, Y. Oulhote, Effect of the spreading of olive mill wastewater on soil microflora. Agrosolutions 20(1), 35–43 (2009) [Google Scholar]
  36. H. Bouigua, K. El Kabous, S. Choukri, M. El Yachioui, M. Ouhssine, Nature's solution: marine mold discovered for direct liquid Olive Mill Wastewater (OMW) depollution. Chin. J. Med. Hist. / Zh. H. Yi. Sh. Za. Zh. 53(07), (2023) [Google Scholar]
  37. AOAC, Official methods of analysis (17th ed.). Washington D.C., USA: Association of Official Analytical Chemists (2000). [Google Scholar]
  38. AOAC official method 934.01, Moisture in animal feed. In Official methods of analysis of AOAC International (16th ed.) (1999). Gaithsburg, USA: AOAC INTERNATIONAL. [Google Scholar]
  39. AACC, American Association of Cereal Chemists. Approved Methods of the AACC, (10th ed.). Methods 44–15A, 76–13, and 08- 16 (2000). St. Paul, MN: The Association. [Google Scholar]
  40. J. Hur, B.M. Lee, T.H. Lee, D.H. Park, Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence J. Spec. Sens. 10, 2460–2471 (2010). https://doi.org/10.3390/s100402460 [CrossRef] [Google Scholar]
  41. F. BenMefteh, A.C. Bouket, A. Daoud, L. Luptakova, F.N. Alenezi, N. Gharsallah, L. Belbahri, Metagenomic Insights and Genomic Analysis of Phosphogypsum and Its Associated Plant Endophytic Microbiomes Reveals Valuable Act. Wast. Bioremed.. Microorg. Sep 23; 7(10), 382 (2019). https://doi.org/10.3390/microorganisms7100382. PMID: 31547633; PMCID: PMC6843645. [Google Scholar]
  42. K. El Kabous, K. Atfaoui, A. Oubihi, S. Hamoutou, M. Ouhssine, The Study of the Heterogeneity of the Qualities of Argan Oils and Pomaces from Different Cooperatives in the Essaouira Region (Morocco). J. Ol. Sci. 72(3), 283–293 (2023). https://doi.org/10.5650/jos.ess22222. PMID: 36878582. [CrossRef] [PubMed] [Google Scholar]
  43. H. Jaber, R. Ijoub, A. Zaher, M. Chakit, N. Rhaiem, B. Bourkhiss, M. Ouhssine, Microbiological study of turkey meat marketed in Kenitra (North-oust of Morocco). J. Nutr. Food. Sci. 7(620), (2017) [Google Scholar]
  44. H. Jaber, R. Ijoub, R. Erahioui, R. Boulamtat, A. Oubayoucef, B. Bourkhiss, & M. Ouhssine, Comparison of the microbiological and hygienic quality of turkey meat between six districts of the Kenitra city. In E3S W. Conf. 319, 01044. (2021). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  45. E.H. Gbekley, K. Komi, K.Z. Houedakor, S. Poli, K. Kpoezou, D.K. Adjalo, K. Zinsou-Klassou, T. Tchacondo, Y. Ameyapoh, P. Adjoussi, The Physico-Chemical and Bacteriological Characterization of Domestic Wastewater in Adétikopé (Togo, West Africa). Sustainability, 15(18), 13787 (2023) [CrossRef] [Google Scholar]
  46. R. Erahioui, S. Inekach, H. Jaber, K. Atfaoui, N. Rhaim, Z. Mennane, M. Ouhssine, Microbiological evaluation of certain fruits and vegetables marketed in the city of Kenitra-Morocco. In E3S W. Conf 319, 01112 (2021). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  47. RATH, Norme 41. (1966) [Google Scholar]
  48. NM 08.6.104 (2006) Enumeration of Pseudomonas aeruginosa. [Google Scholar]
  49. G.J. Tortora, B.R. Funke, C.L. Case, Introduction to Microbiology. Ed. Renouveau Pédagogique Inc. 157–355 (2003) [Google Scholar]
  50. International Standard, (1990) 7698. Available in: https://cdn.standards.iteh.ai/samples/14517/ae6afc18e28649f0ad3824491747b1f3/ISO-7698-1990.pdf [Google Scholar]
  51. B. Botton, A. Breton, M. Févre, S. Gauthier, Ph. Guy, J.P. Larpent, P. Reymond, J.J. Sanglier, Y. Vayssier. R. Veau. Useful and harmful molds: Industrial importance. Masson Publishing, Paris (1990) [Google Scholar]
  52. F. Kachouri, M. Hamdi, Enhancement of polyphenols in olive oil by contact with fermented olive mill wastewater by Lactobacillusplantarum. J. Proc. Biochem. 39, 841–845 (2004) [CrossRef] [Google Scholar]
  53. H. Aissam, M. J. Penninckx, M. Benlemlih, Reduction of phenolics content and COD in olive oil mill wastewaters by indigenous yeasts and fungi. World. J. Microb. Biotech. 23, 12031208 (2007). [CrossRef] [Google Scholar]
  54. M.G. DiSerio, B. Lanza, M.R. Mucciarella, F. Russi, E. Iannucci, P. Marfisi, A. Madeo, Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil, Intern. Biodeter. Biodegrad., 62(4), 403–407 (2008) [CrossRef] [Google Scholar]
  55. M. Salhi, E. Berrich, M. Romdhane, F. Aloui. Experimental investigation of additives effect on olive pomaces pyrolysis: Oyster shells and olive mill waste water. Biomass Bioenergy; 175, 106815 (2023) [CrossRef] [Google Scholar]
  56. J. Rodier, Water analysis: natural waters, wastewater, seawater (9th ed.). DUNOD, Paris. (1996) [Google Scholar]
  57. B.O. Eskikaya, M. Kozak, S. Goçer, V. Akgul, A. Duyar, D. Akman, K. Cirik, Treatment of olive mill wastewater with coagulation process using different concentrations of iron sulfate treatment of olive mill wastewater using coagulation process. Intern. J. Adv. Sci. Eng. Tech. 5(3), Spl. Issue-2 Sep.- (2017) [Google Scholar]
  58. A. El-Abbassi, H. Kiai, A. Hafidi, Phenolic profile and antioxidant activities of olive mill wastewater. J. F. Chem. 132(1), 406–12 (2012). https://doi.org/10.1016/j.foodchem.2011.11.013. Epub 2011 Nov 10. PMID: 26434308. [CrossRef] [Google Scholar]
  59. B.H. Gursoy-Haksevenler, I. Arslan-Alaton, The effects of acid cracking and electrocoagulation processes on the structural fractionation of olive mill wastewater, J. Fresen. Env. Bulletin. Volume 23(8), (2014) 1765–1772 (2014) [Google Scholar]
  60. F. Galliou, N. Markakis, M.S. Fountoulakis, N. Nikolaidis, T. Manios, Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting. Waste Management 75, 305–311 (2018). https://doi.org/10.1016/j.wasman.2018.01.020 [CrossRef] [Google Scholar]
  61. U. Tomati, E. Galli, F. Fiorelli, L. Pasetti, International Biodeterioration and Biodegradation. 38, 155–162 (1996) [CrossRef] [Google Scholar]
  62. R. Tundis, C. Conidi, M.R. Loizzo, V. Sicari, R. Romeo, A. Cassano. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 26, 1808 (2021). https://doi.org/10.3390/molecules26061808 [CrossRef] [PubMed] [Google Scholar]
  63. A. Ranalli, The effluent from olive mills: Proposals for re-use and purification with reference to Italian legislation. Olivae, 37, 30–39p (1991) [Google Scholar]
  64. B. Millan, R. Lucas, A. Robles, T. García, G. Alvarez de Cienfuegos, A. Gálvez, A study on the microbiota from olive-mill wastewater (OMW) disposal lagoons, with emphasis on filamentous fungi and their biodegradative potential. J. Microb. Resear. 155(3),143-7 (2000). https://doi.org/10.1016/s0944-5013(00)80027-0. PMID: 11061182. [CrossRef] [Google Scholar]
  65. F.Z. El Hassani, A. El Karkouri, F. Errachidi, M. Merzouki, M. Benlemlih, The impact of Olive Mill Wastewater spreading on soil and plant in arid and semi-arid areas. Env. Nanotech. Monitor. Manag. 6 (2023). https://doi.org/10.1016/j.enmm.2023.100798. [Google Scholar]
  66. S. Tardioli, E.T.G. Ba'nne', F. Santori, Species-specific selection on soil fungal population after olive mill waste-water treatment. J. Chemosph. 34, 2329–2336 (1997) [CrossRef] [Google Scholar]
  67. H. Aissam, Study of the biodegradation of oil mill effluents (margines) and their valorization through tannase enzyme production. Doctoral thesis. Sidi Mohamed ben Abdellah University (Morocco), Fes, (2003). URL Article: https://thesesenafrique.imist.ma/bitstream/handle/123456789/111/THESEAISSAM.pdf?sequence=1 URL Source: https://thesesenafrique.imist.ma/ [Google Scholar]
  68. S. Khoufi, F. Aloui, S. Sayadi, Anaerobic digestion of olive mill wastewaters after Ca(OH)2 pretreatment. Article published in Wastewater treatment and reuse adapted to mediterranean area: proceedings of Inter. Conf. Watr. 85–89 (2000) [Google Scholar]
  69. S.E. GarridoHoyos, L. Martinez Nieto, F. Camacho Rubio, A. Ramos Cormenzana, Kinetics of aerobictreatment of olive-mill wastewater (OMW) with Aspergillus terreus. J. Proc. Biochem. 37(10), 1169–1176 (2002) [CrossRef] [Google Scholar]
  70. K. Fadil, A. Chahlaoui, A. Ouahbi, A. Zaid, R. Borja, Aerobic biodegradation and detoxification of wastewaters from the olive oil industry, Inter. Biodeter. Biodegrad., 51(1), 3741 (2003) [CrossRef] [Google Scholar]
  71. E.F. Ode, Ç. Öztürk, A. Lewis, A.E. Gloria, A. Jonah, A. Luke, D. Dahiru, Biodegradation and treatment of Olive Mill Wastewater with fungi (Laccase). Inter. J. Adv. Eng. Manag. 4(12), 863–871 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.