Open Access
Issue
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
Article Number 02008
Number of page(s) 5
Section Environmental Pollution & Health Risks
DOI https://doi.org/10.1051/e3sconf/202452702008
Published online 24 May 2024
  1. Gonzalez-Martinez, C. De-Pablos-Heredero, M. González, J. Rodriguez, C. Barba, and A. García, “Morphological Variations of Wild Populations of Brycon dentex (Characidae, Teleostei) in the Guayas Hydrographic Basin (Ecuador). The Impact of Fishing Policies and Environmental Conditions,” Animals. 11(7), 1901, (2021). [Google Scholar]
  2. D. F. B. Garcia, “Organization of the Spanish Hydrographic Institute,”. Int. Hydrog. Rev. (1958). [Google Scholar]
  3. N. Amarjouf, M. Oujidi, D. Meijer, and W. Klop, “Evaluating ephemeral watercourse discharges by hydrologic-hydraulic modelling: application to the Kert River basin, Morocco,” ISH J. Hydraulic. Eng. 27(1), 566–576 (2021). [CrossRef] [Google Scholar]
  4. D. B. Jones, S. Harrison, K. Anderson, and W. B. Whalley, “Rock glaciers and mountain hydrology: A review,” Earth-Sci Rev. 193, 66–90 (2019). [CrossRef] [Google Scholar]
  5. D. Yang, S. Lee, J. Kim, S. Kim, B. Engel, and K. Lim, “Development of web-based hydrograph analysis tool considering seasonality and flow condition,” J. Amer. Water Resourc. Asso. (2023). [Google Scholar]
  6. C. D. DeJong, I. A. Elema, G. Lachapelle, and S. Skone, Hydrog. 33. DUP Blue Print Thatcham, UK, (2002). [Google Scholar]
  7. J.D. Simley and W.J. CarswellJr, “The national map-hydrography,” US Geol. Sur. Fact Sheet. 3054(4), (2009). [Google Scholar]
  8. D.J. Ellett, A. Edwards, and R. Bowers, “The hydrography of the Rockall Channel—an overview,” Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 88, 61–81 (1986). [CrossRef] [Google Scholar]
  9. D. Yamazaki, D. Ikeshima, J. Sosa, P.D. Bates, G.H. Allen, and T.M. Pavelsky, “MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset,” Water Resourc. Res. 55(6), 5053–5073 (2019). [CrossRef] [Google Scholar]
  10. M. Makkaoui, Etude des deformations néotectoniques dans le Rif oriental (Maroc) à l’appui de l’analyse morpho-structurale, Ph.D. thesis, Mohamed First University, Faculté of sciences (2023). [Google Scholar]
  11. M.F. Bréheret, “Contrasted morphosedimentary activity of the lower Kert River (northeastern Morocco) during the Late Pleistocene and the Holocene. Possible impact of bioclimatic variations and human action”. [Google Scholar]
  12. Y. El Yousfi et al., “Pollution Vulnerability of the Ghiss Nekkor Alluvial Aquifer in Al-Hoceima (Morocco), Using GIS-Based DRASTIC Model,” Int. J. Environ. Res. Public Health. 20(6), 4992 (2023). [CrossRef] [Google Scholar]
  13. H. Gueddari et al., “The salinity origin and hydrogeochemical evolution of groundwater in the Oued Kert basin, North-eastern of Morocco,” Sci. Afric. 01226, (2022). [Google Scholar]
  14. Y. El Yousfi et al., “Assessment and Prediction of the Water Quality Index for the Groundwater of the Ghiss-Nekkor (Al Hoceima, Northeastern Morocco),” Sustainability, 15(1), 402 (2023). [Google Scholar]
  15. A. Elaaraj et al., “Remote Sensing Data for Geological Mapping in the Saka Region in Northeast Morocco: An Integrated Approach,” Sustainability (Switzerland), 14(22), (2022). DOI: 10.3390/su142215349. [Google Scholar]
  16. C. Zielhofer, D. Faust, and J. Linstadter, “Late Pleistocene and Holocene alluvial archives in the Southwestern Mediterranean: Changes in fluvial dynamics and past human response,” Quat. Int. 181(1), 39–54 (2008). [CrossRef] [Google Scholar]
  17. P. Carlier, Carte hydrogéologique au 1: 50.000 de la plaine du Moyen-Kerte: Province de Nador, Maroc nord-oriental. Éd. du Service Geologique du Maroc (1973). [Google Scholar]
  18. H.A. Hmeid et al., “Clay mineralogy, chemical and geotechnical characterization of bentonite from Beni Bou Ifrour Massif (The Eastern Rif-Morocco),” Geological Society, London, Special Publications, 502, 2020. [Google Scholar]
  19. M. Elgettafi, A. Elmandour, M. Himi, and A. Casas, “The use of environmental markers to identify groundwater salinization sources in a Neogene basin, Kert aquifer case, NE Morocco,” Int. J. Environ. Sci. Technol. 10, 719–728 (2013). [CrossRef] [Google Scholar]
  20. M. Elgettafi, A. Elmandour, M. Himi, A. CasasPonsatí, and B. Elhaouadi, “Messinian salinity crisis impact on the groundwater quality in Kert aquifer NE Morocco: Hydrochemical and statistical approaches.,” Int. J. Water Resourc. Environ. Eng. 4(11), 339–351 (2012). [Google Scholar]
  21. M. Gregoire et al., “Oceanic mafic granulite xenoliths from the Kerguelen archipelago,” Nature. 367(6461), 360–363 (1994). [CrossRef] [Google Scholar]
  22. K. J. Gregory, “Hydrogeomorphology: how applied should we become?,” Progr. Phys. Geog. 3(1), 84–101 (1979). [CrossRef] [Google Scholar]
  23. S. A. Schumm, “Patterns of alluvial rivers,” Ann. Rev. Earth Planet. Scie. 13(1), 5–27 (1985). [CrossRef] [Google Scholar]
  24. M. Biswas and P. Dhara, “Evolutionary characteristics of meander cut-off—A hydromorphological study of the Jalangi River, West Bengal, India,” Arab. J. Geoscie. 12, 1–21 (2019). [Google Scholar]
  25. S. Amrani, S. Hinaje, and Y. Gharmane, “Application des méthodes paramétriques (drastic et si) pour l’étude de la vulnérabilité à la pollution potentielle par les nitrates de la nappe d’eau superficielle de Timahdite-Almis Guigou (Moyen Atlas, Maroc),”. J. Water Sci. 32(3), 237–252 (2019), doi: https://doi.org/10.7202/1067307ar. [Google Scholar]
  26. J. M. Buffington, D. R. Montgomery, and H. M. Greenberg, “Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments,” Can. J. Fish. Aquat. Sci. 61(11), 2085–2096 (2004). [CrossRef] [Google Scholar]
  27. A. Zerouali and M. R. El Meslouhi, “Élaboration de la vulnérabilité moyennant la méthode DRASTIC et le Système d’Information Geographique (SIG)(cas de la nappe de Souss-Chtouka),” Guidebook on mapping groundwater vulnerability, 94–99, (1994). [Google Scholar]
  28. K. S. Rawat and S. K. Singh, “Water Quality Indices and GIS-based evaluation of a decadal groundwater quality,” Geol. Ecol. Landsc. 2(4), 240–255 (2018). [Google Scholar]
  29. M. Makkaoui, O. Azzouz, K. Belhaj, A. Moqaddem, Lithostratigraphic analysis and characterization of the upper miocene deformation of the Beni Bou Ifroure massif (Jbel Harcha Unit) eastern Rif Morocco. In E3S Web of Conf. 364, 01011 (2023). [CrossRef] [EDP Sciences] [Google Scholar]
  30. W. Capella et al., “Palaeogeographic evolution of the late Miocene Rifian Corridor (Morocco): reconstructions from surface and subsurface data,” Earth-Scie Rev. 180, 37–59, (2018). [CrossRef] [Google Scholar]
  31. M. Achalhi et al., “The late Miocene Mediterranean-Atlantic connections through the north Rifian corridor: new insights from the Boudinar and Arbaa Taourirt basins (northeastern Rif, Morocco),” Palaeogeography, Palaeoclimatology, Palaeoecol. 459, 131–152 (2016). [CrossRef] [Google Scholar]
  32. A. Azizullah, M. N. K. Khattak, P. Richter, and D.-P. Häder, “Water pollution in Pakistan and its impact on public health-a review,” Environ. Int. 37(2), pp. 479–497 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.