Open Access
Issue |
E3S Web Conf.
Volume 527, 2024
The 4th Edition of Oriental Days for the Environment “Green Lab. Solution for Sustainable Development” (JOE4)
|
|
---|---|---|
Article Number | 03012 | |
Number of page(s) | 7 | |
Section | Green Production for Sustainable Development | |
DOI | https://doi.org/10.1051/e3sconf/202452703012 | |
Published online | 24 May 2024 |
- Z. Huang, B. Gong, C.P. Huang, S.Y. Pan, P. Wu, Z. Dang, P.C. Chiang, Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. J. Environ. Manage. 231, 121–128 (2019). https://doi.org/10.1016/j.jenvman.2018.09.092 [CrossRef] [Google Scholar]
- H. Ramírez-Malule, D.H. Quiñones-Murillo, D. Manotas-Duque, Emerging contaminants as global environmental hazards. A bibliometric analysis. Emerg. Contam. 6, 179–193 (2020). https://doi.org/10.1016/j.emcon.2020.05.001 [CrossRef] [Google Scholar]
- C.V.T. Rigueto, M.T. Nazari, C.F. DeSouza, J.S. Cadore, V.B. Brião, J.S. Piccin, J. J, Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. Water Process Eng. 35, (2020). https://doi.org/10.1016/j.jwpe.2020.101231 [Google Scholar]
- K. Vargas-Berrones, L. Bernal-Jácome, L. Díaz de León-Martínez, R. Flores-Ramírez, Emerging pollutants (EPs) in Latin América: A critical review of under-studied EPs, case of study -Nonylphenol-. Sci. Total Environ. 726, 138493 (2020). https://doi.org/10.1016/j.scitotenv.2020.138493 [Google Scholar]
- I. Gozlan, A. Rotstein, D. Avisar, Amoxicillin-degradation products formed under controlled environmental conditions: Identification and determination in the aquatic environment. Chemosphere 91, 985–992 (2013). https://doi.org/10.1016/j.chemosphere.2013.01.095 [CrossRef] [PubMed] [Google Scholar]
- I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Bonilla-Petriciolet, A. Mittal, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J. Environ. Manage. 261, (2020). https://doi.org/10.1016/j.jenvman.2020.110236 [CrossRef] [Google Scholar]
- N. Magesh, A. AnnamRenita, P. Senthil Kumar, Practice on treating pharmaceutical compounds (antibiotics) present in wastewater using biosorption techniques with different biowaste compounds. A review. Environ. Prog. Sustain. Energy 39, (2020). https://doi.org/10.1002/ep.13429 [Google Scholar]
- A. Yazidi, M. Atrous, F. EdiSoetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine, Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: Experimental study and modeling analysis. Chem. Eng. J. 379, (2020).https://doi.org/10.1016/j.cej.2019.122320 [CrossRef] [Google Scholar]
- A. Elizalde-Velázquez, L.M. Gómez-Oliván, M. Galar-Martínez, H. Islas-Flores, O. Dublán-García, N. SanJuan-Reyes, Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. Environ. Heal. Risk -Hazard. Factors to Living Species (2016). https://doi.org/10.5772/62049 [Google Scholar]
- A.J. Watkinson, E.J. Murby, D.W. Kolpin, S.D. Costanzo, The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Sci. Total Environ. 407, 2711–2723 (2009). https://doi.org/10.1016/j.scitotenv.2008.11.059 [CrossRef] [Google Scholar]
- K.K. Sodhi, M. Kumar, D.K. Singh, Insight into the amoxicillin resistance, ecotoxicity, and remediation strategies. J. Water Process Eng. 39, 101858 (2021). https://doi.org/10.1016/j.jwpe.2020.101858 [CrossRef] [Google Scholar]
- A. Charki, H. El Ouarghi, M. Ahari, Treatability tests of synthetic leachate from the Al-Hoceima city controlled landfill, E3S Web Conf. 314 (2021). https://doi.org/10.1051/e3sconf/202131407007 [CrossRef] [EDP Sciences] [Google Scholar]
- A. Charki, H. El Ouarghi, M. Ahari, Synthesis of leachate from the Al Hoceima controlled landfill and characterization (Morocco, North of Africa). Moroccan J. Chem. 10, 800–807 (2022). https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i3.30231 [Google Scholar]
- M. Ahari, N. Touze-Foltz, L. Mazéas, A. Guenne, Quantification of the adsorption of phenolic compounds on the geotextile and bentonite components of four geosynthetic clay liners. Geosynth. Int. 18, 322–331 (2011). https://doi.org/10.1680/gein.2011.18.5.322 [CrossRef] [Google Scholar]
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 393, 122383 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383 [CrossRef] [Google Scholar]
- M. Ahari, N. Touze-Foltz, L. Mazéas, Sorption of chlorophenols on geotextile of the geosynthetic clay liners, Environ. Eng. Res. 25 (2020) 163–170. https://doi.org/10.4491/eer.2019.004 [CrossRef] [Google Scholar]
- O. Fraiha, N. Hadoudi, N. Zaki, A. Salhi, H. Amhamdi, E.H. Akichouh, F. Mourabit, M. Ahari, Comprehensive review on the adsorption of pharmaceutical products from wastewater by clay materials. Desalin. Water Treat. 317, 100114 (2024). https://doi.org/10.1016/j.dwt.2024.100114 [CrossRef] [Google Scholar]
- M. Ahari, H. Ddahim, R. Ramadane, Performance of bentonite clay as a coagulation aid on water quality. Desalin. Water Treat. 143, 229–234 (2019). https://doi.org/10.5004/dwt.2019.23552 [CrossRef] [Google Scholar]
- A. Deryło-Marczewska, A.W. Marczewski, Effect of adsorbate structure on adsorption from solutions. Appl. Surf. Sci. 196, 264–272 (2002). https://doi.org/10.1016/S0169-4332(02)00064-8 [CrossRef] [Google Scholar]
- A. Gil, L. Santamaría, S.A. Korili, Removal of Caffeine and Diclofenac from Aqueous Solution by Adsorption on Multiwalled Carbon Nanotubes. Colloids Interface Sci. Commun. 22, 25–28 (2018). https://doi.org/10.1016/j.colcom.2017.11.007 [CrossRef] [Google Scholar]
- A. Dabrowski, Adsorption - From theory to practice. Adv. Colloid Interface Sci. 93, 135–224 (2001). https://doi.org/10.1016/S0001-8686(00)00082-8 [CrossRef] [Google Scholar]
- S.S. Budyanto, S. Soedjono, W. Irawaty, N, Studies of Adsorption Equilibria and Kinetics of Amoxicillin from Simulated Wastewater using Activated Carbon and Natural Bentonite. Indraswati. J. Environ. Prot. Sci. 2, 72–80 (2008). [Google Scholar]
- D. Balarak, F. Mostafapour, H. Akbari, A. Joghtaei, Adsorption of Amoxicillin Antibiotic from Pharmaceutical Wastewater by Activated Carbon Prepared from Azolla filiculoides. J. Pharm. Res. Int. 18, 1–13 (2017). https://doi.org/10.9734/jpri/2017/35607 [CrossRef] [Google Scholar]
- N.A.J. Mahmood, Y.R. Abdulmajeed, Adsorption of amoxicillin onto Activated Carbon from aqueous solution. Int. J. Curr. Eng. Technol. 7, 62–67 (2017). [Google Scholar]
- M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R.P. de Soares, L.A. Féris, Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: Kinetics, isotherms, experimental design and breakthrough curves modelling. J. Clean. Prod. 161, 947–956 (2017). https://doi.org/10.1016/j.jclepro.2017.05.197 [CrossRef] [Google Scholar]
- L. Sellaoui, E.C. Lima, G.L. Dotto, A. BenLamine, Adsorption of amoxicillin and paracetamol on modified activated carbons: Equilibrium and positional entropy studies. J. Mol. Liq. 234, 375–381 (2017). https://doi.org/10.1016/j.molliq.2017.03.111 [CrossRef] [Google Scholar]
- M. Chauhan, V.K. Saini, S. Suthar, Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water. J. Hazard. Mater. 399, 122832 (2020). https://doi.org/10.1016/j.jhazmat.2020.122832 [CrossRef] [Google Scholar]
- X. Weng, W. Cai, R. Lan, Q. Sun, Z. Chen, Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environ. Pollut. 236, 562–569 (2018). https://doi.org/10.1016/j.envpol.2018.01.100. [CrossRef] [Google Scholar]
- A. Mohammadi, M. Kazemipour, H. Ranjbar, R.B. Walker, M. Ansari, Amoxicillin removal from aqueous media using multi-walled carbon nanotubes. Fullerenes Nanotub. Carbon Nanostructures 23, 165–169 (2015). https://doi.org/10.1080/1536383X.2013.866944 [CrossRef] [Google Scholar]
- M. Bazregari, N. Farhadian, Improvement of amoxicillin removal from aqueous environment by applying functionalized carbon nanotube. Environ. Technol. (United Kingdom) 39, 2231–2242 (2018). https://doi.org/10.1080/09593330.2017.1352622 [Google Scholar]
- Z. Shang, Z. Hu, L. Huang, Z. Guo, H. Liu, C. Zhang, Removal of amoxicillin from aqueous solution by zinc acetate modified activated carbon derived from reed. Powder Technol. 368, 178–189 (2020). https://doi.org/10.1016/j.powtec.2020.04.055 [CrossRef] [Google Scholar]
- E. Limestone-activated, An Efficient Strategy for Enhancing the Adsorption of Carbon – Alginate Nanocomposite. (2021). [Google Scholar]
- D. Barrera, J. Villarroel-Rocha, J.C. Tara, E.I. Basaldella, K. Sapag, Synthesis and textural characterization of a templated nanoporous carbon from MCM-22 zeolite and its use as adsorbent of amoxicillin and ethinylestradiol. Adsorption 20(8) (2014). https://doi.org/10.1007/s10450-014-9640-x [Google Scholar]
- S.E. Moradi, Highly Efficient Removal of Amoxicillin from Water by Magnetic Graphene Oxide Adsorbent. Univ. (Timisoara) 60, (2015). [Google Scholar]
- W. A. Kaol, “KONSEP DAN SIFAT DASAR GRAF FUZZY,” Ekp, 13(3), 1576–1580 (2017). [Google Scholar]
- A. Boukhelkhal, O. Benkortbi, M. Hamadache, N. Ghalem, S. Hanini, A. Amrane, Adsorptive removal of amoxicillin from wastewater using wheat grains: equilibrium, kinetic, thermodynamic studies and mass transfer. Desalin. Water Treat. 57, 27035–27047 (2016). https://doi.org/10.1080/19443994.2016.1166991 [CrossRef] [Google Scholar]
- W.S. Adriano, V. Veredas, C.C. Santana, L.R.B. Gonçalves, Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochem. Eng. J. 27, 132–137 (2005). https://doi.org/10.1016/j.bej.2005.08.010 [CrossRef] [Google Scholar]
- V. Homem, A. Alves, L. Santos. I, Amoxicillin removal from aqueous matrices by sorption with almond shell ashes1. Int. J. Environ. Anal. Chem. 90, 1063–1084 (2010). https://doi.org/10.1080/03067310903410964 [CrossRef] [Google Scholar]
- C. Sophia A., E.C. Lima, Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 150, 1–17 (2018). https://doi.org/10.1016/j.ecoenv.2017.12.026 [CrossRef] [Google Scholar]
- Ruthven, D.M. John Wiley & Sons, Principle of Adsorption and Adsorption Processes. Chap. 23. New York. 1984 (1984). [Google Scholar]
- A.A. Aryee, E. Dovi, Q. Li, R. Han, Z. Li, L. Qu, Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, Congo red and phosphate from solution: Characterization, kinetics, equilibrium, mechanism and antibacterial studies. Chemosphere 287, 132030 (2022). https://doi.org/10.1016/j.chemosphere.2021.132030 [CrossRef] [PubMed] [Google Scholar]
- A.A. Aryee, F.M. Mpatani, Y. Du, A.N. Kani, E. Dovi, R. Han, Z. Li, L. Qu, Fe3O4 and iminodiacetic acid modified peanut husk as a novel adsorbent for the uptake of Cu (II) and Pb (II) in aqueous solution: Characterization, equilibrium and kinetic study. Environ. Pollut. 268, 115729 (2021). https://doi.org/10.1016/j.envpol.2020.115729 [CrossRef] [Google Scholar]
- E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Res. 43, 2419– 2430 (2009). https://doi.org/10.1016/i.watres.2009.02.039 [CrossRef] [Google Scholar]
- S. xing Zha, Y. Zhou, X. Jin, Z. Chen, The removal of amoxicillin from wastewater using organobentonite. J. Environ. Manage. 129, 569–576 (2013). https://doi.org/10.1016/i.ienvman.2013.08.032 [CrossRef] [Google Scholar]
- O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. SantosJúnior, J. V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 288, 778–788 (2016). https://doi.org/10.1016/i.cei.2015.12.042 [CrossRef] [Google Scholar]
- R. Chitongo, B.O. Opeolu, O.S. Olatunji, Abatement of Amoxicillin, Ampicillin, and Chloramphenicol From Aqueous Solutions Using Activated Carbon Prepared From Grape Slurry. Clean - Soil, Air, Water 47, (2019). https://doi.org/10.1002/clen.201800077 [CrossRef] [Google Scholar]
- K. Jafari, M. Heidari, O. Rahmanian, Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrason. Sonochem. 45, 248–256 (2018). https://doi.org/10.1016/i.ultsonch.2018.03.018 [CrossRef] [Google Scholar]
- H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J. Water Process Eng. 1, 64–73 (2014). https://doi.org/10.1016/i.iwpe.2014.03.006 [CrossRef] [Google Scholar]
- N. Zaki, N. Hadoudi, A. Charki, N. Bensitel, H. Elouarghi, H. Amhamdi, M. Ahari, Advancements in the chemical treatment of potable water and industrial wastewater using the coagulation-flocculation process. Sep. Sci. Technol. (2023). https://doi.org/10.1080/01496395.2023.2219381 [Google Scholar]
- N. Zaki, N. Hadoudi, N. Bensitel, A. Salhi, H. Amhamdi, Assessing the efficacy of bentonite as a coagulant aid for raw water treatment. 29976, 1–9 (2023). https://doi.org/10.5004/dwt.2023.29976 [Google Scholar]
- N. Hadoudi, H. Amhamdi, M. Ahari, Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature. E3S Web Conf. 314, (2021). https://doi.org/10.1051/e3sconf/202131407003 [CrossRef] [EDP Sciences] [Google Scholar]
- M. MozaffariMaid, V. Kordzadeh-Kermani, V. Ghalandari, A. Askari, M. Sillanpää, Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci. Total Environ. 812, (2022). https://doi.org/10.1016/i.scitotenv.2021.151334 [Google Scholar]
- I. Anastopoulos, G.Z. Kyzas, Agricultural peels for dye adsorption: A review of recent literature. J. Mol. Liq. 200, 381–389 (2014). https://doi.org/10.1016/i.molliq.2014.11.006 [CrossRef] [Google Scholar]
- H. Laksaci, B. Belhamdi, O. Khelifi, A. Khelifi, M. Trari, Elimination of amoxicillin by adsorption on coffee waste based activated carbon. J. Mol. Struct. 1274, 134500 (2023). https://doi.org/10.1016/i.molstruc.2022.134500 [CrossRef] [Google Scholar]
- T.G.F. Souza, S.J. Olusegun, B.R.L. Galvão, J.L.F. DaSilva, N.D.S. Mohallem, V.S.T. Ciminelli, Mechanism of amoxicillin adsorption by ferrihydrites: Experimental and computational approaches. J. Mol. Liq. 373, 121202 (2023). https://doi.org/10.1016/i.molliq.2023.121202 [CrossRef] [Google Scholar]
- H. El Farissi, A. Beraich, M. Lamsayah, A. Talhaoui, A. El Bachiri, The efficiency of carbon modified by phosphoric acid (H3PO4) used in the removal of two antibiotics amoxicillin and metronidazole from polluted water: Experimental and theoretical investigation. J. Mol. Liq. 391, 123237 (2023). https://doi.org/10.1016/i.molliq.2023.123237 [CrossRef] [Google Scholar]
- Y. Li, M. Shi, M. Xia, F. Wang, The enhanced adsorption of Ampicillin and Amoxicillin on modified montmorillonite with dodecyl dimethyl benzyl ammonium chloride: Experimental study and density functional theory calculation. Adv. Powder Technol. 32, 3465–3475 (2021). https://doi.org/10.1016/i.apt.2021.08.001 [CrossRef] [Google Scholar]
- G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari, Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem. Eng. J. 217, 119– 128 (2013). https://doi.org/10.1016/i.cei.2012.11.069 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.