Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01012
Number of page(s) 11
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901012
Published online 29 May 2024
  1. Jadhav, Priyanka A., and Dilip K. Kulkarni. “Effect of replacement of natural sand by manufactured sand on the properties of cement mortar.” International journal of civil and structural Engineering 3(3) (2013): 621. [Google Scholar]
  2. Nadimalla, A., Masjuki, S. A. B., Khan, S. A., & Akshatha, B. A. (2018, November “The effect of replacement of natural sand by manufactured sand on the properties of the concrete.” 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS). IEEE, 2018. [Google Scholar]
  3. Thamilselvi, P. “Experimental Studies on Partial Replacement Of Natural Sand With Manufactured Sand.” (2016). [Google Scholar]
  4. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  5. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  6. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  7. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., … & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [Google Scholar]
  8. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., … & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  9. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S., … & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  10. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  11. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  12. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  13. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [Google Scholar]
  14. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830. [CrossRef] [Google Scholar]
  15. Del Angel, G. G., Aghajanian, A., Cabrera, R., Tamayo, P., Sainz-Aja, J. A., & Thomas, C. (2022). Influence of Partial and Total Replacement of Used Foundry Sand in Self-Compacting Concrete. Applied Sciences, 13(1), 409. [CrossRef] [Google Scholar]
  16. Girish, K. M., Naik, R., Prashantha, S. C., Nagabhushana, H., Nagaswarupa, H. P., Raju, K. A., … & Nagabhushana, B. M. (2015). Zn2TiO4: Eu3+ nanophosphor: self explosive route and its near UV excited photoluminescence properties for WLEDs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 857–865. [CrossRef] [Google Scholar]
  17. Benabed, B., Kadri, E. H., Azzouz, L., & Kenai, S. (2012). Properties of self-compacting mortar made with various types of sand. Cement and Concrete Composites, 34(10), 1167–1173. [CrossRef] [Google Scholar]
  18. Siddique, R., & Sandhu, R. K. (2013). Properties of self-compacting concrete incorporating waste foundry sand. Leonardo J. Sci, 23, 105–124. [Google Scholar]
  19. Damodharan, D., Rajesh Kumar, B., Gopal, K., De Poures, M. V., & Sethuramasamyraja, B. (2019). Utilization of waste plastic oil in diesel engines: a review. Reviews in Environmental Science and Bio/Technology, 18(4), 681–697. [CrossRef] [Google Scholar]
  20. Jiang, Z., & Mei, S. (2008). Properties of self-compacting concrete with machine-made sand and high-volume mineral admixtures. The Open Construction & Building Technology Journal, 2(1). [Google Scholar]
  21. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., … & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  22. Carro-López, D., González-Fonteboa, B., Martínez-Abella, F., González-Taboada, I., de Brito, J., & Varela-Puga, F. (2017). Proportioning, microstructure and fresh properties of self-compacting concrete with recycled sand. Procedia engineering, 171, 645–657. [CrossRef] [Google Scholar]
  23. Parashar, A., Aggarwal, P., Saini, B., Aggarwal, Y., & Bishnoi, S. (2020). Study on performance enhancement of self-compacting concrete incorporating waste foundry sand. Construction and Building Materials, 251, 118875. [CrossRef] [Google Scholar]
  24. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R., … & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  25. Saand, A., Ali, K., Kumar, A., Bheel, N., & Keerio, M. A. (2021). Effect of metakaolin developed from natural material Soorh on fresh and hardened properties of self-compacting concrete. Innovative Infrastructure Solutions, 6, 1–10. [CrossRef] [Google Scholar]
  26. Skender, Z., Bali, A., & Kettab, R. (2021). Self-compacting concrete (SCC) behaviour incorporating limestone fines as cement and sand replacement. European Journal of Environmental and Civil Engineering, 25(10), 1852–1873. [CrossRef] [Google Scholar]
  27. Tripathi, D., Kumar, R., & Mehta, P. K. (2022). Development of an environmental-friendly durable self-compacting concrete. Environmental Science and Pollution Research, 29(36), 54167–54180. [CrossRef] [PubMed] [Google Scholar]
  28. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  29. Bouziani, T. (2013). Assessment of fresh properties and compressive strength of self-compacting concrete made with different sand types by mixture design modelling approach. Construction and Building Materials, 49, 308–314. [CrossRef] [Google Scholar]
  30. Mahakavi, P., & Chithra, R. (2020). Effect of recycled coarse aggregate and manufactured sand in self compacting concrete. Australian Journal of Structural Engineering, 21(1), 33–43. [CrossRef] [Google Scholar]
  31. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  32. Chavan, B. V., & Modani, P. O. (2019). Experimental investigation on self-compacting concrete by replacing natural sand with artificial sand. International Research Journal of Engineering and Technology (IRJET), 6(5), 6901–6903. [Google Scholar]
  33. Lam, N. N. (2020, July). A study on using crushed sand to replace natural sand in high-strength self-compacting concrete towards sustainable development in construction. In IOP Conference Series: Earth and Environmental Science (Vol. 505, No. 1, p. 012003). IOP Publishing. [CrossRef] [Google Scholar]
  34. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D., … & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  35. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263. [CrossRef] [Google Scholar]
  36. Nanthagopalan, P., & Santhanam, M. (2011). Fresh and hardened properties of self-compacting concrete produced with manufactured sand. Cement and concrete composites, 33(3), 353–358. [CrossRef] [Google Scholar]
  37. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. [CrossRef] [Google Scholar]
  38. Nadimalla, A., Masjuki, S. A. B., Khan, S. A., & Akshatha, B. A. (2018, November). The effect of replacement of natural sand by manufactured sand on the properties of the concrete. In 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1–7). IEEE. [Google Scholar]
  39. Jadhav, P. A., & Kulkarni, D. K. (2013). Effect of replacement of natural sand by manufactured sand on the properties of cement mortar. International journal of civil and structural Engineering, 3(3), 621. [Google Scholar]
  40. Arunkumar, K., Muthukannan, M., Kumar, A. S., Ganesh, A. C., & Devi, R. K. (2021). Production of Eco-Friendly Geopolymer Concrete by using Waste Wood Ash for a Sustainable Environment. Pollution, 7(4), 993–1006. https://doi.org/10.22059/POLL.2021.320857.1039 [Google Scholar]
  41. Arunvivek, G. K., & Rameshkumar, D. (2022). Experimental Investigation on Feasibility of utilizing Phosphogypsum in E-Glass Fiber-incorporated Non-fired Ceramic Wall Tile. Journal of The Institution of Engineers (India): Series A, 103(2), 445–451. https://doi.org/10.1007/s40030-021-00604-2 [CrossRef] [Google Scholar]
  42. Sankar, B., & Ramadoss, P. (2021). Review on fiber hybridization in ternary blended high-performance concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.366 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.