Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01018
Number of page(s) 9
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901018
Published online 29 May 2024
  1. Shukla, A., Gupta, N., Singh, K. R., Kumar Verma, P., Bajaj, M., Khan, A. A., & Ayalew, F. (2022). Performance Evaluation of Bio Concrete by Cluster and Regression Analysis for Environment Protection. Computational Intelligence and Neuroscience, 2022. [Google Scholar]
  2. Gupta, A., Gupta, N., & Saxena, K. K. (2021). Mechanical and Durability Characteristics Assessment of Geopolymer Composite (GPC) at Varying Silica Fume Content. Journal of Composites Science, 5(9), 237. [CrossRef] [Google Scholar]
  3. Nagar, P. A., Gupta, N., Kishore, K., & Parashar, A. K. (2021). Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete. Materials Today: Proceedings, 44, 113–117. [Google Scholar]
  4. Arunkumar, K., Muthukannan, M., Dinesh Babu, A., Hariharan, A. L., & Muthuramalingam, T. (2020). Effect on addition of Polypropylene fibers in wood ash-fly ash based geopolymer concrete. IOP Conference Series: Materials Science and Engineering, 872(1). https://doi.org/10.1088/1757-899X/872/1/012162 [CrossRef] [Google Scholar]
  5. Arunvivek, G. K., & Rameshkumar, D. (2019). Experimental Investigation on Performance of Waste Cement Sludge and Silica Fume-Incorporated Portland Cement Concrete. Journal of The Institution of Engineers (India): Series A, 100(4), 611–618. https://doi.org/10.1007/s40030-019-00399-3 [CrossRef] [Google Scholar]
  6. Sankar, B., & Ramadoss, P. (2022). Mechanical and Durability Properties of High Strength Concrete Incorporating Different Combinations of Supplementary Cementitious Materials: A Review. https://doi.org/10.1007/978-981-16-4321-7_45 [Google Scholar]
  7. Girish, K. M., Prashantha, S. C., Nagabhushana, H., Ravikumar, C. R., Nagaswarupa, H. P., Naik, R., … & Umesh, B. (2018). Multi-functional Zn2TiO4: Sm3+ nanopowders: excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151–160. [CrossRef] [Google Scholar]
  8. Bhukya, M. N., Kota, V. R., & Depuru, S. R. (2019). A simple, efficient, and novel standalone photovoltaic inverter configuration with reduced harmonic distortion. IEEE access, 7, 43831–43845. [CrossRef] [Google Scholar]
  9. Belaidi, A. S. E., Azzouz, L., Kadri, E., & Kenai, S. (2012). Effect of natural pozzolana and marble powder on the properties of self-compacting concrete. Construction and Building Materials, 31, 251–257. [CrossRef] [Google Scholar]
  10. Naresh, M., & Munaswamy, P. (2019). Smart agriculture system using IoT technology. International journal of recent technology and engineering, 7(5), 98–102. [Google Scholar]
  11. Ramprasad, P., Basavapoornima, C., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral investigations of Nd3+: Ba (PO3) 2+ La2O3 glasses for infrared laser gain media applications. Optical Materials, 129, 112482. [CrossRef] [Google Scholar]
  12. Elsageer, M. A. A., Moftah, H. A., Ziad, A. A. M., & Abd-Alftah, M. M. (2020). Effect of Marble Waste Powder as Cement Replacement on The Concrete Mixes. Journal of Pure & Applied Sciences, 19(5), 74–78. [Google Scholar]
  13. Goud, J. S., Srilatha, P., Kumar, R. V., Kumar, K. T., Khan, U., Raizah, Z., … & Galal, A. M. (2022). Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies in Thermal Engineering, 35, 102113. [Google Scholar]
  14. Raghunath, P. N., Suguna, K., Karthick, J., & Sarathkumar, B. (2019). Mechanical and durability characteristics of marble-powder-based high-strength concrete. Scientia Iranica, 26(6), 3159–3164. [Google Scholar]
  15. Yue, L., Jayapal, M., Cheng, X., Zhang, T., Chen, J., Ma, X., … & Zhang, W. (2020). Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Applied Surface Science, 512, 145686. [CrossRef] [Google Scholar]
  16. Indira, D. N. V. S. L. S., Ganiya, R. K., Babu, P. A., Xavier, A. J., Kavisankar, L., Hemalatha, S., … & Yeshitla, A. (2022). Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis. BioMed Research International, 2022. [Google Scholar]
  17. Jaidass, N., Moorthi, C. K., Babu, A. M., & Babu, M. R. (2018). Luminescence properties of Dy3+ doped lithium zinc borosilicate glasses for photonic applications. Heliyon, 4(3). [Google Scholar]
  18. Lakshmi, L., Reddy, M. P., Santhaiah, C., & Reddy, U. J. (2021). Smart phishing detection in web pages using supervised deep learning classification and optimization technique ADAM. Wireless Personal Communications, 118(4), 3549–3564. [CrossRef] [Google Scholar]
  19. Spandana, K., & Rao, V. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology (UAE), 7(3), 259–262. [Google Scholar]
  20. Kumar, K. U., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646, 414327. [CrossRef] [Google Scholar]
  21. Naik, R., Prashantha, S. C., Nagabhushana, H., Sharma, S. C., Nagaswarupa, H. P., Anantharaju, K. S., … & Girish, K. M. (2016). Tunable white light emissive Mg2SiO4: Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes and Pigments, 127, 25–36. [CrossRef] [Google Scholar]
  22. Rathod, V. P., & Tanveer, S. (2009). Pulsatile flow of couple stress fluid through a porous medium with periodic body acceleration and magnetic field. Bulletin of the Malaysian Mathematical Sciences Society, 32(2). [Google Scholar]
  23. Jisha, P. K., Prashantha, S. C., & Nagabhushana, H. (2017). Luminescent properties of Tb doped gadolinium aluminate nanophosphors for display and forensic applications. Journal of Science: Advanced Materials and Devices, 2(4), 437–444. [CrossRef] [Google Scholar]
  24. Evram, A., Akçaoğlu, T., Ramyar, K., & Çubukçuoğlu, B. (2020). Effects of waste electronic plastic and marble dust on hardened properties of high strength concrete. Construction and Building Materials, 263, 120928. [CrossRef] [Google Scholar]
  25. Alrobei, H., Prashanth, M. K., Manjunatha, C. R., Kumar, C. P., Chitrabanu, C. P., Shivaramu, P. D., … & Raghu, M. S. (2021). Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: Isotherms, kinetics and statistical error analysis. Ceramics International, 47(7), 10322–10331. [CrossRef] [Google Scholar]
  26. Ulubeyli, G. C., & Artir, R. (2015). Properties of hardened concrete produced by waste marble powder. Procedia-Social and Behavioral Sciences, 195, 2181–2190. [CrossRef] [Google Scholar]
  27. Kulandaivel, D., Rahamathullah, I. G., Sathiyagnanam, A. P., Gopal, K., & Damodharan, D. (2020). Effect of retarded injection timing and EGR on performance, combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304. [CrossRef] [Google Scholar]
  28. Hora, S. K., Poongodan, R., De Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long short-term memory network-based metaheuristic for effective electric energy consumption prediction. Applied Sciences, 11(23), 11263. [CrossRef] [Google Scholar]
  29. Singh, M., Srivastava, A., & Bhunia, D. (2019). Analytical and experimental investigations on using waste marble powder in concrete. Journal of Materials in Civil Engineering, 31(4), 04019011. [CrossRef] [Google Scholar]
  30. Raj, T. V., Hoskeri, P. A., Muralidhara, H. B., Manjunatha, C. R., Kumar, K. Y., & Raghu, M. S. (2020). Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. Journal of Electroanalytical Chemistry, 858, 113830. [CrossRef] [Google Scholar]
  31. Topcu, I. B., Bilir, T., & Uygunoğlu, T. (2009). Effect of waste marble dust content as filler on properties of self-compacting concrete. Construction and building Materials, 23(5), 1947–1953. [CrossRef] [Google Scholar]
  32. Demirel, B., & Alyamaç, K. E. (2018). Waste marble powder/dust. In Waste and Supplementary Cementitious Materials in Concrete (pp. 181–197). Woodhead Publishing. [CrossRef] [Google Scholar]
  33. Alyamaç, K. E., & Aydin, A. B. (2015). Concrete properties containing fine aggregate marble powder. KSCE Journal of Civil Engineering, 19(7), 2208–2216. [CrossRef] [Google Scholar]
  34. Boukhelkhal, A., Azzouz, L., Belaïdi, A. S. E., & Benabed, B. (2016). Effects of marble powder as a partial replacement of cement on some engineering properties of self-compacting concrete. Journal of adhesion science and Technology, 30(22), 2405–2419. [CrossRef] [Google Scholar]
  35. Demirel, B., & Alyamaç, K. E. (2018). Waste marble powder/dust. In Waste and Supplementary Cementitious Materials in Concrete (pp. 181–197). Woodhead Publishing. [CrossRef] [Google Scholar]
  36. Memon, F. A., Yousfani, A. M., Ladher, D. K., & Jarwar, N. (2017, November). Effect of Marble Dust as a Partial Replacement of Cement on Fresh and Hardened Properties of Concrete. In Proceedings of the International Conference on Sustainable Development in Civil Engineering, Jamshoro, Pakistan (pp. 23–25). [Google Scholar]
  37. Ali, M. M., & Hashmi, S. M. (2014). An experimental investigation on strengths characteristics of concrete with the partial replacement of cement by marble powder dust and sand by stone dust. International Journal for Scientific Research & Development, 2(7), 360–368. [Google Scholar]
  38. Gesoğlu, M., Güneyisi, E., Kocabağ, M. E., Bayram, V., & Mermerdaş, K. (2012). Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 37, 160–170. [CrossRef] [Google Scholar]
  39. Ghani, A., Ali, Z., Khan, F. A., Shah, S. R., Khan, S. W., & Rashid, M. (2020). Experimental study on the behavior of waste marble powder as partial replacement of sand in concrete. SN Applied Sciences, 2(9), 1554. [CrossRef] [Google Scholar]
  40. Khodabakhshian, A., Ghalehnovi, M., De Brito, J., & Shamsabadi, E. A. (2018). Durability performance of structural concrete containing silica fume and marble industry waste powder. Journal of cleaner production, 170, 42–60. [CrossRef] [Google Scholar]
  41. Arunkumar, K., Muthukannan, M., Suresh kumar, A., & Chithambar Ganesh, A. (2021). Mitigation of waste rubber tire and waste wood ash by the production of rubberized low calcium waste wood ash based geopolymer concrete and influence of waste rubber fibre in setting properties and mechanical behavior. Environmental Research, 194(December 2020), 110661. https://doi.org/10.1016/j.envres.2020.110661 [CrossRef] [PubMed] [Google Scholar]
  42. Prithiviraj, C., Swaminathan, P., Kumar, D. R., Murali, G., & Vatin, N. I. (2022). Fresh and Hardened Properties of Self-Compacting Concrete Comprising a Copper Slag. Buildings, 12(7). https://doi.org/10.3390/buildings12070965 [CrossRef] [Google Scholar]
  43. Sankar, B., & Ramadoss, P. (2021). Review on fiber hybridization in ternary blended high-performance concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.01.366 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.