Open Access
Issue
E3S Web of Conf.
Volume 529, 2024
International Conference on Sustainable Goals in Materials, Energy and Environment (ICSMEE’24)
Article Number 01054
Number of page(s) 12
Section Materials
DOI https://doi.org/10.1051/e3sconf/202452901054
Published online 29 May 2024
  1. Abd Ali, Z. T., Naji, L. A., Almuktar, S. A., Faisal, A. A., Abed, S. N., Scholz, M., Ahamad, T. (2020). Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. Journal of Water Process Engineering, 33, 101033 http://dx.doi.org/10.1016/j.jwpe.2019.101033 [CrossRef] [Google Scholar]
  2. Abdo, G. T., & Radwan, N. A. Effect of aggressive soil on self compacting concrete. [Google Scholar]
  3. Alexander, M. G. (2013). Durability performance potential and strength of blended Portland limestone cement concrete. Cement and Concrete Composites, 39, 115–121. http://dx.doi.org/10.1016/j.cemconcomp.2013.03.027 [CrossRef] [Google Scholar]
  4. Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alsubari, B., Alqedra, M. A., & Mo, K. H. (2018). Effect of aggressive chemicals on durability and microstructure properties of concrete containing crushed new concrete aggregate and non-traditional supplementary cementitious materials. Construction and Building Materials, 163, 482–495. https://doi.org/10.1016/j.conbuildmat.2017.12.106 [CrossRef] [Google Scholar]
  5. Azarsa, P., Gupta, R., & Biparva, A. (2020). Inventive microstructural and durability investigation of cementitious composites involving crystalline waterproofing admixtures and portland limestone cement. Materials, 13(6), 1425 doi:10.3390/ma13061425 [CrossRef] [PubMed] [Google Scholar]
  6. Bai, K. D., Sounthararajan, V., & Rao, A. K. (2020). Sodium chloride effects on the steel fibre reinforced concrete in aggressive environmental conditions. Materials Today: Proceedings, 27, 1241–1246. https://doi.org/10.1016/j.matpr.2020.02.148 [CrossRef] [Google Scholar]
  7. Benaicha, M., Belcaid, A., Alaoui, A. H., Jalbaud, O., & Burtschell, Y. (2019). Effects of limestone filler and silica fume on rheology and strength of self-compacting concrete. Structural Concrete, 20(5), 1702–1709. DOI: 10.1002/suco.201900150 [CrossRef] [Google Scholar]
  8. Benjeddou, O., Soussi, C., Jedidi, M., & Benali, M. (2017). Experimental and theoretical study of the effect of the particle size of limestone fillers on the rheology of self-compacting concrete. Journal of Building Engineering, 10, 32–41. http://dx.doi.org/10.1016/j.jobe.2017.02.003 [CrossRef] [Google Scholar]
  9. Berriel, S. S., Favier, A., Domínguez, E. R., Machado, I. S., Heierli, U., Scrivener, K.,.. . Habert, G. (2016). Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. Journal of Cleaner Production, 124, 361–369. http://dx.doi.org/10.1016/j.jclepro.2016.02.125 [CrossRef] [Google Scholar]
  10. Chambua, S. T., Jande, Y. A. C., & Machunda, R. L. (2021). Strength and Durability Properties of Concrete Containing Pumice and Scoria as Supplementary Cementitious Material. Advances in Materials Science and Engineering, 2021. [Google Scholar]
  11. Chen, Y., Li, Z., Chaves Figueiredo, S., Çopuroğlu, O., Veer, F., & Schlangen, E. (2019). Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: a fundamental study of extrudability and early-age strength development. Applied Sciences, 9(9), 1809 doi:10.3390/app9091809 [CrossRef] [Google Scholar]
  12. Coudert, E., Paris, M., Deneele, D., Russo, G., & Tarantino, A. (2019). Use of alkali activated high-calcium fly ash binder for kaolin clay soil stabilisation: Physicochemical evolution. Construction and Building Materials, 201, 539–552. https://www.sciencedirect.com/science/article/pii/S0950061818331817 [CrossRef] [Google Scholar]
  13. Coumes, C. C. D., Dhoury, M., Champenois, J.-B., Mercier, C., & Damidot, D. (2017). Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement. Cement and Concrete Research, 97, 50–60. http://dx.doi.org/10.1016/j.cemconres.2017.03.006 [CrossRef] [Google Scholar]
  14. Dhandapani, Y., Sakthivel, T., Santhanam, M., Gettu, R., & Pillai, R. G. (2018). Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cement and Concrete Research, 107, 136–151. DOI: 10.1016/j.cemconres.2018.02.005 [CrossRef] [Google Scholar]
  15. Dhandapani, Y., & Santhanam, M. (2017). Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cement and Concrete Composites, 84, 36–47. https://doi.org/10.1016/j.cemconcomp.2017.08.012ol [CrossRef] [Google Scholar]
  16. Dhandapani, Y., & Santhanam, M. (2020). Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cement and Concrete Research, 129, 105959 [CrossRef] [Google Scholar]
  17. Diab, A. M., Abd Elmoaty, M., & Aly, A. A. (2016). Long term study of mechanical properties, durability and environmental impact of limestone cement concrete. Alexandria Engineering Journal, 55(2), 1465–1482. http://dx.doi.org/10.1016/j.aej.2016.01.031 [CrossRef] [Google Scholar]
  18. Diab, A. M., Mohamed, I. A., & Aliabdo, A. A. (2016). Impact of organic carbon on hardened properties and durability of limestone cement concrete. Construction and Building Materials, 102, 688–698. http://dx.doi.org/10.1016/j.conbuildmat.2015.10.182 [CrossRef] [Google Scholar]
  19. Díaz, Y. C., Berriel, S. S., Heierli, U., Favier, A. R., Machado, I. R. S., Scrivener, K. L.,.. . Habert, G. (2017). Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Development Engineering, 2, 82–91. http://dx.doi.org/10.1016/j.deveng.2017.06.001 [CrossRef] [Google Scholar]
  20. Ding, X., Li, C., Xu, Y., Li, F., & Zhao, S. (2016). Experimental study on long-term compressive strength of concrete with manufactured sand. Construction and Building Materials, 108, 67–73. http://dx.doi.org/10.1016/j.conbuildmat.2016.01.028 [CrossRef] [Google Scholar]
  21. Du, H., & Dai Pang, S. (2020). High-performance concrete incorporating calcined kaolin clay and limestone as cement substitute. Construction and Building Materials, 264, 120152 https://www.sciencedirect.com/science/article/pii/S0950061820321577 [CrossRef] [Google Scholar]
  22. Faisal, A. A., Ahmed, D. N., Rezakazemi, M., Sivarajasekar, N., & Sharma, G. (2021). Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. Journal of Environmental Chemical Engineering, 9(3), 105194 [CrossRef] [Google Scholar]
  23. Favier, A., & Scrivener, K. (2018). Alkali Silica Reaction and Sulfate Attack: Expansion of Limestone Calcined Clay Cement Calcined Clays for Sustainable concrete (pp. 165–169): Springer. https://doi.org/10.1007/978–94-024–1207-9_26 [Google Scholar]
  24. Fuchida, S., Hobo, S., Tsuchiya, K., Tanaka, Y., Nakamura, T., & Tokoro, C. (2020). Experimental Investigation of Boron Removal Mechanism from Wastewater by Calcined Ettringite. Water, Air, & Soil Pollution, 231(7), 1–9. https://doi.org/10.1007/s11270–020-04713–9 [CrossRef] [Google Scholar]
  25. Guo, M., Hu, B., Xing, F., Zhou, X., Sun, M., Sui, L., & Zhou, Y. (2020). Characterisation of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis. Construction and Building Materials, 234, 117339 https://doi.org/10.1016/j.conbuildmat.2019.117339 [CrossRef] [Google Scholar]
  26. Hasita, S., Suddeepong, A., Horpibulsuk, S., Samingthong, W., Arulrajah, A., & Chinkulkijniwat, A. (2020). Properties of Asphalt Concrete Using Aggregates Composed of Limestone and Steel Slag Blends. Journal of Materials in Civil Engineering, 32(7), 06020007 [CrossRef] [Google Scholar]
  27. Ho, H.-J., Iizuka, A., & Shibata, E. (2020). Chemical recycling and use of various types of concrete waste: A review. Journal of Cleaner Production, 124785. https://doi.org/10.1016/j.jclepro.2020.124785 [Google Scholar]
  28. Arunkumar, Kadarkarai, Muthiah Muthukannan, Arunachalam Suresh Kumar, Arunasankar Chithambar Ganesh, and Rangaswamy Kanniga Devi. 2021. “Production of Eco-Friendly Geopolymer Concrete by Using Waste Wood Ash for a Sustainable Environment.” Pollution 7(4):993–1006. doi: 10.22059/POLL.2021.320857.1039. [Google Scholar]
  29. Huang, Z.-y., Huang, Y.-s., Liao, W.-y., Han, N.-x., Zhou, Y.-w., Xing, F.,.. . Ma, H.-y. (2020). Development of limestone calcined clay cement concrete in South China and its bond behavior with steel reinforcement. Journal of Zhejiang University-SCIENCE A, 21(11), 892–907. https://doi.org/10.1631/jzus.A2000163 [CrossRef] [Google Scholar]
  30. Iizuka, A., Sasaki, T., Honma, M., Yoshida, H., Hayakawa, Y., Yanagisawa, Y., & Yamasaki, A. (2017). Pilot-scale operation of a concrete sludge recycling plant and simultaneous production of calcium carbonate. Chemical Engineering Communications, 204(1), 79–85. http://dx.doi.org/10.1080/00986445.2016.1235564 [CrossRef] [Google Scholar]
  31. Sankar, B., and P. Ramadoss. 2023.on="1.0" encon="1.0" encencoding="U1.0" encoding="Uodinon="1.0" Silica Fum?x?xd Metakaolin as Cementitious Materials in High-Performance Concrete.” International Review of Applied Sciences and Engineering. doi: 10.1556/1848.2023.00638. [Google Scholar]
  32. Kang, S.-H., Jeong, Y., Tan, K. H., & Moon, J. (2019). High-volume use of limestone in ultra-high performance fiber-reinforced concrete for reducing cement content and autogenous shrinkage. Construction and Building Materials, 213, 292–305. https://doi.org/10.1016/j.conbuildmat.2019.04.091 [CrossRef] [Google Scholar]
  33. Kępniak, M., Woyciechowski, P., Łukowski, P., Kuziak, J., & Kobyłka, R. (2019). The Durability of Concrete Modified by Waste Limestone Powder in the Chemically Aggressive Environment. Materials, 12(10), 1693 doi:10.3390/ma12101693 [CrossRef] [PubMed] [Google Scholar]
  34. Kim, G., & Park, S. (2021). Chloride Removal of Calcium Aluminate-Layered Double Hydroxide Phases: A Review. International Journal of Environmental Research and Public Health, 18(6), 2797 [CrossRef] [PubMed] [Google Scholar]
  35. Kozubal, J., Wyjadłowski, M., & Steshenko, D. (2019). Probabilistic analysis of a concrete column in an aggressive soil environment. PloS one, 14(3), e0212902. https://doi.org/10.1371/journal.pone.0212902 [Google Scholar]
  36. Li, B., Ling, X., Liu, X., Li, Q., & Chen, W. (2019). Hydration of Portland cements in solutions containing high concentration of borate ions: Effects of LiOH. Cement and Concrete Composites, 102, 94–104. https://doi.org/10.1016/j.cemconcomp.2019.04.010 [CrossRef] [Google Scholar]
  37. Li, C. (2020). Mechanical and transport properties of recycled aggregate concrete modified with limestone powder. Composites Part B: Engineering, 197, 108189 [CrossRef] [Google Scholar]
  38. Li, C., Jiang, L., Xu, N., & Jiang, S. (2018). Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technology, 338, 416–424. https://doi.org/10.1016/j.powtec.2018.07.054 [CrossRef] [Google Scholar]
  39. Li, L. G., Chen, J.-J., & Kwan, A. K. (2017). Roles of packing density and water film thickness in strength and durability of limestone fines concrete. Magazine of Concrete Research, 69(12), 595–605. http://dx.doi.org/10.1680/jmacr.16.00067 [CrossRef] [Google Scholar]
  40. Sankar, B., and P. Ramadoss. 2022. “Experimental and Statistical Investigations on Alccofine Based Ternary Blended High-Performance Concrete.” International Journal of Engineering, Transactions B: Applications 35(8):1629–40. doi: 10.5829/IJE.2022.35.08B.19. [Google Scholar]
  41. Lin, R.-S., Lee, H.-S., Han, Y., & Wang, X.-Y. (2021). Experimental studies on hydration–strength–durability of limestone-cement-calcined Hwangtoh clay ternary composite. Construction and Building Materials, 269, 121290 https://doi.org/10.1016/j.conbuildmat.2020.121290 [CrossRef] [Google Scholar]
  42. Prithiviraj, Chidambaram, Packirisamy Swaminathan, Deivasigamani Ramesh Kumar, Gunasekaran Murali, and Nikolai Ivanovich Vatin. 2022. “Fresh and Hardened Properties of Self-Compacting Concrete Comprising a Copper Slag.” Buildings 12(7). doi: 10.3390/buildings12070965. [Google Scholar]
  43. Ltifi, M., & Zafar, I. (2019). Effect of total substitution of crushed limestone sand on concrete durability. European Journal of Environmental and Civil Engineering, 1–23. https://doi.org/10.1080/19648189.2019.1649199 [Google Scholar]
  44. Ma, Y., Yuan, D., & Han, C. (2021). Electrochemical Corrosion Behaviour of Carbon Steel Reinforcement in Metakaolin-Limestone Modified Concrete Exposed to Simulated Soil Solution. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 16(5). [Google Scholar]
  45. Millán Ramírez, G. P., Byliński, H., & Niedostatkiewicz, M. (2021). Deterioration and Protection of Concrete Elements Embedded in Contaminated Soil: A Review. Materials, 14(12), 3253 https://doi.org/10.3390/ma14123253 [CrossRef] [PubMed] [Google Scholar]
  46. Monteiro, P. J., Miller, S. A., & Horvath, A. (2017). Towards sustainable concrete. Nature materials, 16(7), 698–699. www.nature.com/naturematerials [CrossRef] [PubMed] [Google Scholar]
  47. Moon, G. D., Oh, S., Jung, S. H., & Choi, Y. C. (2017). Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Construction and Building Materials, 135, 129–136. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.189 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.