Open Access
Issue
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
Article Number 01001
Number of page(s) 15
Section Integrating Sustainability Strategies and Developments in Industrial Production
DOI https://doi.org/10.1051/e3sconf/202453201001
Published online 06 June 2024
  1. Ministerio de Ambiente y Desarrollo Sostenible, Presidencia de la Nación. Informe del Estado del Ambiente, pp. 465–466 (2021). [Google Scholar]
  2. ONU Medio Ambiente (2018). Perspectiva de la gestión de residuos en América Latina y el Caribe. Programa de las Naciones Unidas para el Medio Ambiente, Oficina para América Latina y el Caribe. Ciudad de Panamá, Panamá. [Google Scholar]
  3. CAMMESA [en línea] Compañía Administradora del Mercado Mayorista Eléctrico Sociedad Anónima. Informe Anual 2022. Dirección URL: https://cammesaweb.cammesa.com/informe-anual [Google Scholar]
  4. United Nations (2020). 17 Goals to Transform Our World. Dirección URL: https://www.un.org/sustainabledevelopment [Google Scholar]
  5. Secretaría de Ambiente, Gobierno de la Provincia de Mendoza (2018). Resolución 597/2018: Centro Ambiental El Borbollón, Departamento de Las Heras, y evaluación general de remediación de basurales (en Campo Papa -Godoy Cruz-, Puente de Hierro -Guaymallén- y Campo Cacheuta -Luján de Cuyo) y Construcción de puntos verdes. [Google Scholar]
  6. Ministerio de Salud y Ambiente, Secretaría de Ambiente y Desarrollo Sustentable (2005). Estrategia Nacional para la Gestión Integral de Residuos Sólidos Urbanos, ENGIRSU. [Google Scholar]
  7. Narayana, T. Municipal solid waste management in India: From waste disposal to recovery of resources?. Waste Management 29, 3, 1163–1166. (2009). https://doi.org/10.1016/j.wasman.2008.06.038 [CrossRef] [Google Scholar]
  8. Demirel, B., Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7, 173–190 (2008). https://doi.org/10.1007/s11157-008-9131-1 [CrossRef] [Google Scholar]
  9. Ehrig H.J., Schneider H.J., Gossow V. (2011). Waste, 7. Deposition. ULLMANN’S Encyclopedia of Industrial Chemistry 38, 541–562. https://doi.org/10.1002/14356007.b08_559.pub2 [Google Scholar]
  10. Norouzi O. y Dutta A. The current status and future potential of biogas production from Canada’s organic fraction municipal solid waste. Energies 15, 2, 475. (2022). https://doi.org/10.3390/en15020475 [CrossRef] [Google Scholar]
  11. Calbry-Muzyka A., Madi H., Rüsch-Pfund F., Gandiglio M., Biollaz, S. Biogas composition from agricultural sources and organic fraction of municipal solid waste. Renewable Energy 181, 1000–1007. (2022). https://doi.org/10.1016/j.renene.2021.09.100 [CrossRef] [Google Scholar]
  12. US EPA, “Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide,” U.S. Environmental Protection Agency Office of Research and Development. 2005. https://www.epa.gov/catc/clean-air-technology-center-products [Google Scholar]
  13. Panesso A.F., Cadena J.A., Mora Flórez J.J., Ordoñez M.D. Análisis del biogás captado en un relleno sanitario como combustible primario para la generación de energía eléctrica. Scientia Et Technica XVII, 47, 23–28. (2011). ISSN: 0122-1701 [Google Scholar]
  14. Dirección de Estadísticas e Investigaciones Económicas, Gobierno de la Provincia de Mendoza (DEIE) Dinámica futura de la población Mendoza. Años 2001 – 2040. Proyección de la Población por sexo y grupos quinquenales de edad Mendoza. Período 2001-2040. Población total según departamento, proyectada al 30 de junio de cada año, ajustada a la proyección nacional y provincial Mendoza. Años 2001–2015. (2019). [Google Scholar]
  15. García F. Determinación cuantitativa y cualitativa de los contaminantes atmosféricos emitidos por la disposición de residuos sólidos en rellenos sanitarios, estudio de caso: relleno sanitario curva de rodas. Tesis de Maestría. Universidad de Antioquia. (2003). [Google Scholar]
  16. Dirección de Agricultura y Contingencias Climáticas, Gobierno de Mendoza. Informe Año 2017 y Avance de temporada 2017/2018. Provincia de Mendoza. (2018). [Google Scholar]
  17. Amaraibi R.J., Joseph B., Kuhn J.N. Techno-economic and sustainability analysis of siloxane removal from landfill gas used for electricity generation. Journal of Environmental Management 314, 115070. (2022). https://doi.org/10.1016/j.jenvman.2022.115070 [CrossRef] [PubMed] [Google Scholar]
  18. Konkol I., Cebula J., Świerczek L., Piechaczek-Wereszczyńska M., Cenian A. Biogas Pollution and Mineral Deposits Formed on the Elements of Landfill Gas Engines. Materials 2022, 15, 2408. (2022). http://dx.doi.org/10.3390/ma15072408 [CrossRef] [PubMed] [Google Scholar]
  19. Ente Provincial Regulador Eléctrico – EPRE. Resolución N° 01/2022: Reglamento de Modalidades, Condiciones Técnicas, Comerciales y Legales del Régimen de Recursos de Energía Distribuida (Ley 9084 – Dec. Nº 404/2021). (2022). [Google Scholar]
  20. Bajić B.Ž., Dodić S.N., Vučurović D.G., Dodić J.M., Grahovac J.A.. Waste-to-energy status in Serbia. Renewable and Sustainable Energy Reviews 50, 1437–1444. (2015) https://doi.org/10.1016/j.rser.2015.05.079 [CrossRef] [Google Scholar]
  21. Kale C. y Gökçek M. A techno-economic assessment of landfill gas emissions and energy recovery potential of different landfill areas in Turkey. Journal of Cleaner Production, 275, 122946. (2020). https://doi.org/10.1016/j.jclepro.2020.122946 [CrossRef] [Google Scholar]
  22. Buragohain S., Mohanty K., Mahanta P. Hybridization of solar photovoltaic and biogas system: Experimental, economic and environmental analysis. Sustainable Energy Technologies and Assessments 45, 101050. (2021). https://doi.org/10.1016/j.seta.2021.101050 [CrossRef] [Google Scholar]
  23. Barros R.M., Tiago Filho G.L., Da Silva T.R. The electric energy potential of landfill biogas in Brazil. Energy Policy 65, 150–164. (2014). https://doi.org/10.1016/j.enpol.2013.10.028 [CrossRef] [Google Scholar]
  24. Alzate S., Restrepo-Cuestas B., Jaramillo-Duque Á. Municipal solid waste as a source of electric power generation in Colombia: A techno-economic evaluation under different scenarios. Resources 8, 1, 51. (2019). https://doi.org/10.3390/resources8010051 [CrossRef] [Google Scholar]
  25. Capstone Green Energy Corporation Product Specification: Capstone C65 Microturbine 460044 Rev N. (2021). [Google Scholar]
  26. Ente Nacional Regulador del Gas (ENARGAS) NAG-602: Especificaciones de calidad para el transporte y la distribución de gas natural y otros gases análogos. (2019). [Google Scholar]
  27. Pan, Q., Liu, Q. Y., Zheng, J., Li, Y. H., Xiang, S., Sun, X. J., & He, X. S. Volatile and semi-volatile organic compounds in landfill gas: Composition characteristics and health risks. Environment International, 107886. (2023). https://doi.org/10.1016/j.envint.2023.107886 [CrossRef] [PubMed] [Google Scholar]
  28. Osra, F. A., Ozcan, H. K., Alzahrani, J. S., Alsoufi, M. S. Municipal solid waste characterization and landfill gas generation in kakia landfill, makkah. Sustainability, 13(3), 1462. (2021). https://doi.org/10.3390/su13031462 [CrossRef] [Google Scholar]
  29. Capstone Green Energy Corporation. Case Studies. https://www.capstonegreenenergy.com/case-studies. Accessed: January 29th. (2024). [Google Scholar]
  30. Khan M.A., Haque A., Kurukuru V.B., Saad M. Islanding detection techniques for grid-connected photovoltaic systems-A review. Renewable and Sustainable Energy Reviews 154, 111854. (2022). http://dx.doi.org/10.1016/j.rser.2021.111854 [CrossRef] [Google Scholar]
  31. Grossi Gallegos H. y Righini R. Atlas de energía solar de la República Argentina. Universidad Nacional de Luján y la Secretaría de Ciencia y Tecnología. ISBN 978-987-9285-36-7. (2007). ISBN: 978-987-9285-36-7 [Google Scholar]
  32. Verdezoto, P. L. C., Vidoza, J. A., & Gallo, W. L. Analysis and projection of energy consumption in Ecuador: Energy efficiency policies in the transportation sector. Energy Policy, Volume 134, 2019, 110948. (2019). http://dx.doi.org/10.1016/j.enpol.2019.110948 [CrossRef] [Google Scholar]
  33. Institute of Electrical and Electronics Engineers (IEEE) IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems (IEEE Buff Book), in IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], pp.1–710, 17 Dec. 2001, (2001). https://doi.org/10.1109/IEEESTD.2001.93369 [Google Scholar]
  34. Institute of Electrical and Electronics Engineers (IEEE) Standard Electrical Power System Device Function Numbers, Acronyms, and Contact Designations,” in IEEE Std C37.2-2008 (Revision of IEEE Std C37.2-1996), pp.1–48, 3 Oct. 2008, doi: 10.1109/IEEESTD.2008.4639522. (2008). [Google Scholar]
  35. Krey V., Masera O., Blanford G., Bruckner T., Cooke R., Fisher-Vanden K., Haberl H., Hertwich E., Kriegler E., Mueller D., Paltsev S., Price L., Schlömer S., Ürge-Vorsatz D., van Vuuren D., Zwickel T. Annex II: Metrics & Methodology. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edenhofer O., Pichs-Madruga R., Sokona Y., Farahani E., Kadner S., Seyboth K., Adler A., Baum I., Brunner S., Eickemeier P., Kriemann B., Savolainen J., Schlömer S., von Stechow C., Zwickel T., Minx J.C. (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014). [Google Scholar]
  36. Moreira M.M., Gaioli F., Galbusera S. Inventario Nacional de Gases de Efecto Invernadero: Argentina-2019. 1ra Ed. Ciudad Autónoma de Buenos Aires: Secretaría de Ambiente y Desarrollo Sustentable de la Nación. (2019). [Google Scholar]
  37. International Organization for Standardization ISO 20675:2018 Biogas production, conditioning, definitions and classification scheme 2018. (2018). [Google Scholar]
  38. Castillo A., Correa E., Cantón M. Geomorfología y forma urbana. Comportamiento térmico de distintas tramas en áreas de piedemonte: el caso de Mendoza, Argentina. EURE (Santiago) 45, 136, 183–207. (2019). http://dx.doi.org/10.4067/S0250-71612019000300183 [Google Scholar]
  39. Manasaki, V., Palogos, I., Chourdakis, I., Tsafantakis, K., & Gikas, P. Techno-economic assessment of landfill gas (LFG) to electric energy: Selection of the optimal technology through field-study and model simulation. Chemosphere, 269, 128688. (2021). http://dx.doi.org/10.1016/j.chemosphere.2020.128688 [CrossRef] [PubMed] [Google Scholar]
  40. Limmanee A., Udomdachanut N., Songtrai S., Kaewniyompanit S., Sato Y., Nakaishi M., Kittisontirak S., Sriprapha K., Sakamoto Y. Field performance and degradation rates of different types of photovoltaic modules: A case study in Thailand, Renewable Energy 89, Pages 12–17. (2016). https://doi.org/10.1016/j.renene.2015.11.088. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.