Open Access
Issue
E3S Web Conf.
Volume 532, 2024
Second International Conference of Applied Industrial Engineering: Intelligent Production Automation and its Sustainable Development (CIIA 2024)
Article Number 01002
Number of page(s) 17
Section Integrating Sustainability Strategies and Developments in Industrial Production
DOI https://doi.org/10.1051/e3sconf/202453201002
Published online 06 June 2024
  1. Agencia de Regulación y Control de Energía y Recursos Naturales no Renovables, Balance Nacional de Energía Eléctrica. Ministerio de Energía y Minas, (Quito, Ecuador, 2023) https://www.controlrecursosyenergia.gob.ec/balance-nacional-de-energia-electrica/. Last accessed 10 March 2024. [Google Scholar]
  2. P. Dechamps, The IEA World Energy Outlook 2022 – a brief analysis and implications, The European Energy and Climate Journal, 11(3), 100–103 (2023) https://doi.org/10.4337/eecj.2023.03.05 [CrossRef] [Google Scholar]
  3. Q. Hassan, P. Viktor, T. J. Al-Musawi, B. Mahmood Ali, S. Algburi, H. M. Alzoubi, A. K. Al-Jiboory, A. Sameen, M. Hayder, M. Jaszczur, The renewable energy role in the global energy transformation. Renewable Energy Focus, 48, 100545 (2024). [CrossRef] [Google Scholar]
  4. Y. Nassar, M. Khaleel, Sustainable Development and the Surge in Electricity Demand Across Emerging Economies, Int. J. Electr. Eng. and Sustain. 2(1), 51–60 (2024). [Google Scholar]
  5. M. Büchs, N. Cass, C. Mullen, K. Lucas, D. Ivanova, Emissions savings from equitable energy demand reduction, Nature Energy 8(7), 758–769 (2023). [CrossRef] [Google Scholar]
  6. P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou, Sustainable development using renewable energy technology, Renewable energy 146, 2430–2437 (2020). [CrossRef] [Google Scholar]
  7. J. Cevallos-Sierra, J. Ramos-Martin, Spatial assessment of the potential of renewable energy: The case of Ecuador, Renewable and Sustainable Energy Reviews 81, 1154–1165 (2018). [CrossRef] [Google Scholar]
  8. M. E. Z. Zapata, E. C. P. Carpio, A. R. C. Alava, J. O. Y. Márquez, M. E. M. Soto, V. J. G. Montealegre, Economic feasibility study on a banana farm applying alternative energy: photovoltaic, South Florida Journal of Development 3(4), 5159–5172 (2022). [CrossRef] [Google Scholar]
  9. X. Zhikun, Research and design of control system of the solar panel tracking, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China, pp. 1384–1388 (2016). [Google Scholar]
  10. M. A. Ponce-Jara, C. Velásquez-Figueroa, M. Reyes-Mero, C. Rus-Casas, Performance Comparison between Fixed and Dual-Axis Sun-Tracking Photovoltaic Panels with an IoT Monitoring System in the Coastal Region of Ecuador, Sustainability 14(3), 1696 (2022). [CrossRef] [Google Scholar]
  11. M. M. Reyes, S. Tuárez, I. Fernando, Análisis Comparativo Técnico-Económico Entre Paneles Solares Estáticos y Paneles Con Sistema De Seguimiento De Dos Ejes Instalados En La Ciudad De Manta-ULEAM, Undergraduare thesis, Facultad de Ingeniería, Universidad Laica Eloy Alfaro de Manabí (2021). [Google Scholar]
  12. D. D. Fiallos Chamorro, Determinación del punto óptimo de potencia de paneles fotovoltaicos en base a variables difusas mediante el modelo de Liu Jordan, Undergraduare thesis, Ingeniería Eléctrica, Universidad Politécnica Salesiana (2020). [Google Scholar]
  13. S. V. Arpi Puga, B. G. Prado Bermeo. Diseño de un seguidor solar de doble eje para un sistema de energía fotovoltaica en el centro de salud de la comunidad de Yaapi, Undergraduare thesis, Ingeniería Mecatrónica, Universidad Politécnica Salesiana (2022). [Google Scholar]
  14. F. I. Mustafa, S. Shakir, F. F. Mustafa, A. T. Naiyf. Simple design and implementation of solar tracking system two axis with four sensors for Baghdad city, In 2018 9th International Renewable Energy Congress (IREC), pp. 1–5. IEEE, Hammamet, Tunisia (2018). [Google Scholar]
  15. M. Singh, J. Singh, A. Garg, E. Sidhu, V. Singh, A. Nag, Eflcient autonomous solar energy harvesting system utilizing dynamic offset feed mirrored parabolic dish integrated solar panel, In 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1825–1829, IEEE, Chennai, India (2016). [Google Scholar]
  16. D. A. Mejía, I. T. Chávez, A. Mejía, Positioning control of square arrangements of solar panels by solar tracing using fuzzy logic, South Florida Journal of Development 2(2), 3318–3331 (2021). [CrossRef] [Google Scholar]
  17. M. A. Alarcón, R. G. Alarcón, A. H. González, A. Ferramosca, Modeling a residential microgrid for energy management, In 2020 Argentine Conference on Automatic Control (AADECA), pp. 1–6, IEEE, Buenos Aires, Argentina (2020). [Google Scholar]
  18. S. K. Sahoo, M. Balamurugan, S. Anurag, R. Kumar, V. Priya, Maximum power point tracking for PV panels using ant colony optimization, In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–4, IEEE, Vellore, India, (2017). [Google Scholar]
  19. M. R. Haider, A. Shufian, M. N. Alam, M. I. Hossain, R. Islam, M. A. Azim, Design and implementation of three-axis solar tracking system with high eflciency, In 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), pp. 1–5, IEEE, Dhaka, Bangladesh (2021). [Google Scholar]
  20. J. F. Agila Díaz, L. A. Landázuri Ayala, Diseño y construcción de un sistema de rastreo solar biaxial para generación de 600 Wh de energía eléctrica, Undergraduare thesis, Ingeniería Mecánica, Universidad Politécnica Salesiana (2021). [Google Scholar]
  21. FireBeetle ESP32 IoT Microcontroller (Supports Wi-Fi and Bluetooth), https://www.dfrobot.com/product-1590.htm. Last accessed 13 March 2024 [Google Scholar]
  22. Secretaría de Ambiente del Municipio del Distrito Metropolitano Quito, Datos historicos remmaq, (2022). http://www.quitoambiente.gob.ec/index.php/descarga-datos-historico. Last accessed 27 March 2023 [Google Scholar]
  23. Calculation of sun position in the sky for each location on the earth at any time of day. Azimuth, sunrise sunset noon, daylight, and graphs of the solar path, https://www.sunearthtools.com/dp/tools/pos_sun.php. Last accessed 13 March 2024 [Google Scholar]
  24. J. S. Fuentevilla, M. Ávalos, D. García, Diseño y construcción de un sistema de seguimiento fotovoltaico, Universidad Tecnológica de la Mixteca, 2012. [Google Scholar]
  25. W. X. García-Quilachamin, J. E. Sanchez-Cano, J. Herrera-Tapia, E. J. Velesaca-Zambrano, Analysis of A Two-Axis Solar Tracker System: Case Study, International Journal of Online and Biomedical Engineering (iJOE), 17(05), pp. 147–164 (2021). [CrossRef] [Google Scholar]
  26. H. A. E.-m. Salama, A. T. M. Taha, Practical Implementation of Dual Axis Solar Power Tracking System, In 2018 Twentieth International Middle East Power Systems Conference (MEPCON), pp. 446–451, IEEE, Cairo, Egypt (2018). [Google Scholar]
  27. M. Boxwell, The Solar Electricity Handbook-2017 Edition: A simple, practical guide to solar energy–designing and installing solar photovoltaic systems, Greenstream Publishing (2017). [Google Scholar]
  28. CONELEC. Atlas Solar del Ecuador con fines de generación eléctrica. https://biblioteca.olade.org/opac-tmpl/Documentos/cg00041.pdf. Last accessed 13 March 2024 [Google Scholar]
  29. E. F. Brigham, Financial management: Theory and practice. Cengage Learning Canada Inc (2016). [Google Scholar]
  30. F. Ordóñez, C. Morales, J. López-Villada, S. Vaca, Assessment of the energy gain of photovoltaic systems by using solar tracking in equatorial regions, Journal of Solar Energy Engineering 140(3), 031003 (2018). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.