Open Access
Issue
E3S Web of Conf.
Volume 536, 2024
2024 6th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2024)
Article Number 01023
Number of page(s) 9
Section Environmental Planning Management and Ecological Construction
DOI https://doi.org/10.1051/e3sconf/202453601023
Published online 10 June 2024
  1. Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., & Shukla, P. R. (2022). Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press. [Google Scholar]
  2. International Energy Agency. (2023). Space cooling. Retrieved from https://www.iea.org/energy-system/buildings/space-cooling [Google Scholar]
  3. Yoo, C., Cho, E., Na, W., Kang, M., & Lee, M. (2021). Change of rainfall – runoff processes in urban areas due to high-rise buildings. Journal of Hydrology, 597, 126155. [CrossRef] [Google Scholar]
  4. Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., ... & Rowe, B. (2007). Green roofs as urban ecosystems: ecological structures, functions, and services. BioScience, 57(10), 823-833. [CrossRef] [Google Scholar]
  5. Busker, T., de Moel, H., Haer, T., Schmeits, M., van den Hurk, B., Myers, K., ... & Aerts, J. (2022). Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. Journal of Environmental Management, 301, 113750. [CrossRef] [Google Scholar]
  6. Feng, Y., Wang, J., Zhou, W., Li, X., & Yu, X. (2022). Evaluating the Cooling Performance of Green Roofs Under Extreme Heat Conditions. Frontiers in Environmental Science, 10, 874614. [CrossRef] [Google Scholar]
  7. Battista, G., Pastore, E. M., Mauri, L., & Basilicata, C. (2016). Green roof effects in a case study of Rome (Italy). Energy Procedia, 101, 1058-1063. [CrossRef] [Google Scholar]
  8. Vijayaraghavan, K. (2016). Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and sustainable energy reviews, 57, 740-752. [CrossRef] [Google Scholar]
  9. Chen, X., & Liu, R. (2023). Distribution characteristics of Sedum plant roots on green roofs and their impact on saturated hydraulic conductivity. Journal of Environmental Engineering Technology, 13(1), 8.. [Google Scholar]
  10. Azam, N. M., Romali, N. S., & Abd Razak, A. S. (2024). Eco-friendly green roof from biodegradable substrate for stormwater quality improvement. In IOP Conference Series: Earth and Environmental Science (Vol. 1296, No. 1, p. 012003). IOP Publishing.. [CrossRef] [Google Scholar]
  11. Dunnett, N., & Kingsbury, N. (2008). Planting green roofs and living walls. Timber press Portland, OR. [Google Scholar]
  12. Wang, T., Ou, R., Yu, L., Qi, H., & Zhang, J. (2023). Automatic monitoring system and application of rainwater retention efficiency for rooftop greening based on PLC. Journal of South China Agricultural University, 44(3), 484-494. (in Chinese) [Google Scholar]
  13. Getter, K. L., & Rowe, D. B. (2006). The role of extensive green roofs in sustainable development. HortScience, 41(5), 1276-1285. [CrossRef] [Google Scholar]
  14. Souza, M. A., Sousa, F. C., Baêta, F. C., Vigoderis, R. B., & Zanetoni, H. H. R. (2024). Green roofs in animal production facilities-A review of strategies for estimating the carbon dioxide balance. Renewable and Sustainable Energy Reviews, 189, 114000. [CrossRef] [Google Scholar]
  15. Dong, S., & Xu, T. (2023). Analysis of the impact of urbanization on precipitation characteristics and trends in Shanghai. In Civil Engineering and Urban Research, Volume 2 (pp. 562-573). CRC Press. [CrossRef] [Google Scholar]
  16. Yang, J., Ding, J., Liang, H., Deng, M., Jin, H., & Feng, W., et al. (2023). Comparison of heat tolerance and drought resistance between the rooftop greening plants Liriope spicata and Ophiopogon japonicus. Pratacultural Science, 40(1), 162-168. (in Chinese with English Abstract) [Google Scholar]
  17. Bulkeley, H. (2013). Cities and climate change. Routledge. [CrossRef] [Google Scholar]
  18. Borden, K. A., & Cutter, S. L. (2008). Spatial patterns of natural hazards mortality in the United States.International journal of health geographics, 7, 1-13. [Google Scholar]
  19. Lalo š evi ć, M., Komatina, M., Milo š, M., & Rudonja, N. (2018). Green roofs and cool materials as retrofitting strategies for urban heat island mitigation case study in Belgrade, Serbia. Thermal Science, 22(6), 2309-2324. [CrossRef] [Google Scholar]
  20. Tonietto, R., Fant, J., Ascher, J., Ellis, K., & Larkin, D. (2011). A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning, 103(1), 102-108. [CrossRef] [Google Scholar]
  21. Wong, G. K., & Jim, C. Y. (2017). Urban-microclimate effect on vector mosquito abundance of tropical green roofs. Building and Environment, 112, 63-76. [CrossRef] [Google Scholar]
  22. He, K. Y., Peng, Y., Tong, Y., Chen, J., & Xu, B. (2023). Analysis and practical application of suitable technologies for sponge cities in mountainous architecture. Chongqing Architecture. (in Chinese) [Google Scholar]
  23. Stovin, V., Vesuviano, G., & De-Ville, S. (2017). Defining green roof detention performance. Urban Water Journal, 14(6), 574-588. [CrossRef] [Google Scholar]
  24. Stovin, V., Poë, S., & Berretta, C. (2013). A modelling study of long term green roof retention performance. Journal of Environmental Management, 131, 206-215. [CrossRef] [PubMed] [Google Scholar]
  25. Getter, K. L., Rowe, D. B., & Andresen, J. A. (2007). Quantifying the effect of slope on extensive green roof stormwater retention. Ecological Engineering, 31(4), 225-231. [CrossRef] [Google Scholar]
  26. Carpenter, D. D., & Kaluvakolanu, P. (2011). Effect of roof surface type on storm-water runoff from full-scale roofs in a temperate climate. Journal of Irrigation and Drainage Engineering, 137(3), 161-169. [CrossRef] [Google Scholar]
  27. Speak, A., Rothwell, J., Lindley, S., & Smith, C. (2013). Rainwater runoff retention on an aged intensive green roof. Science of The Total Environment, 461, 28-38. [CrossRef] [Google Scholar]
  28. Nagase, A., & Dunnett, N. (2012). Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landscape and Urban Planning, 104(3-4), 356-363. [CrossRef] [Google Scholar]
  29. Voyde, E., Fassman, E., & Simcock, R. (2010). Hydrology of an extensive living roof under sub-tropical climate conditions in Auckland, New Zealand. Journal of Hydrology, 394(3-4), 384-395. [CrossRef] [Google Scholar]
  30. Yu, C., & Hien, W. N. (2006). Thermal benefits of city parks. Energy and buildings, 38(2), 105-120 [CrossRef] [Google Scholar]
  31. Francis, L. F. M., & Jensen, M. B. (2017). Benefits of green roofs: A systematic review of the evidence for three ecosystem services. Urban forestry & urban greening, 28, 167-176. [CrossRef] [Google Scholar]
  32. Wang, L., Zhang, S., Liang, J., Ma, A., An, Q., & Qian, L. (2023). Analysis of stormwater control and benefits of green roofs based on the SWMM model. Hydropower and Energy Science.162, 106273. [Google Scholar]
  33. Wang, R., Zhang, S., Zhang, S., Yan, J., Yang, H., & Wang, K. et al. (2023). Influence of plant root systems on the runoff regulation function of green roofs. Journal of Beijing Forestry University, 45(6), 108-116.(in Chinese with English Abstract) [Google Scholar]
  34. Palla, A., Gnecco, I., & Lanza, L. G. (2010). Hydrologic restoration in the urban environment using green roofs. Water, 2(2), 140-154. [CrossRef] [Google Scholar]
  35. Tran, S., Lundholm, J. T., Staniec, M., Robinson, C. E., Smart, C. C., Voogt, J. A., & O'Carroll, D. M. (2019). Plant survival and growth on extensive green roofs: a distributed experiment in three climate regions. Ecological engineering, 127, 494-503. [CrossRef] [Google Scholar]
  36. MacIvor, J. S., & Lundholm, J. (2011). Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecological engineering, 37(3), 407-417. [CrossRef] [Google Scholar]
  37. Schweitzer, O., & Erell, E. (2014). Evaluation of the energy performance and irrigation requirements of extensive green roofs in a water-scarce Mediterranean climate. Energy and Buildings, 68, 25-32. [CrossRef] [Google Scholar]
  38. Spolek, G. (2008). Performance monitoring of three ecoroofs in Portland, Oregon. Urban Ecosystems, 11, 349-359. [CrossRef] [Google Scholar]
  39. Carson, T., Marasco, D., Culligan, P., & McGillis, W. (2013). Hydrological performance of extensive green roofs in New York City: observations and multi-year modeling of three full-scale systems. Environmental Research Letters, 8(2), 024036. [CrossRef] [Google Scholar]
  40. Fassman-Beck, E., Voyde, E., Simcock, R., & Hong, Y. S. (2013). 4 Living roofs in 3 locations: Does configuration affect runoff mitigation? Journal of hydrology, 490, 11-20. [CrossRef] [Google Scholar]
  41. Razzaghmanesh, M., Beecham, S., & Kazemi, F. (2014). The growth and survival of plants in urban green roofs in a dry climate. Science of the Total Environment, 476, 288-297. [CrossRef] [Google Scholar]
  42. Schroll, E., Lambrinos, J., Righetti, T., & Sandrock, D. (2011). The role of vegetation in regulating stormwater runoff from green roofs in a winter rainfall climate. Ecological engineering, 37(4), 595-600. [CrossRef] [Google Scholar]
  43. Lee, J. Y., Lee, M. J., & Han, M. (2015). A pilot study to evaluate runoff quantity from green roofs. Journal of environmental management, 152, 171-176. [CrossRef] [PubMed] [Google Scholar]
  44. Uhl, M., & Schiedt, L. (2008). Green roof storm water retention - monitoring results. 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, [Google Scholar]
  45. Schneider, D., Wadzuk, B. M., & Traver, R. G. (2011). Using a weighing lysimeter to determine a crop coefficient for a green roof to predict evapotranspiration with the FAO standardized Penman-Monteith equation. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability. [Google Scholar]
  46. Köhler, M., Schmidt, M., & Laar, M. (2003). Green roofs as a contribution to reduce urban heat islands. Proceedings of the World Climate and Energy Event, Rio de Janeiro, Brazil, 1-5. [Google Scholar]
  47. Peng, L. L., & Jim, C. Y. (2013). Green-roof effects on neighborhood microclimate and human thermal sensation. Energies, 6(2), 598-618. [CrossRef] [Google Scholar]
  48. Wong, N. H., Chen, Y., Ong, C. L., & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Building and environment, 38(2), 261-270. [CrossRef] [Google Scholar]
  49. Wong, N. H., Tan, P. Y., & Chen, Y. (2007). Study of thermal performance of extensive rooftop greenery systems in the tropical climate. Building and Environment, 42(1), 25-54. [CrossRef] [Google Scholar]
  50. Getter, K. L., Rowe, D. B., Andresen, J. A., & Wichman, I. S. (2011). Seasonal heat flux properties of an extensive green roof in a Midwestern US climate. Energy and Buildings, 43(12), 3548-3557. [CrossRef] [Google Scholar]
  51. Liu, T. C., Shyu, G. S., Fang, W. T., Liu, S. Y., & Cheng, B. Y. (2012). Drought tolerance and thermal effect measurements for plants suitable for extensive green roof planting in humid subtropical climates. Energy and buildings, 47, 180-188. [CrossRef] [Google Scholar]
  52. Zhao, F., Zhang, W., Luo, X., Huang, X., Xu, H., & Wu, Z. (2023). Study on ventilation performance driven by wind-thermal pressure under the influence of green roof systems. Journal of Wuhan University: Engineering Edition, 56(10), 1271-1281.. [Google Scholar]
  53. Bevilacqua, P., Mazzeo, D., Bruno, R., & Arcuri, N. (2017). Surface temperature analysis of an extensive green roof for the mitigation of urban heat island in southern mediterranean climate. Energy and Buildings, 150, 318-327. [CrossRef] [Google Scholar]
  54. Santana, T. C., Guiselini, C., Montenegro, A. A. D. A., Pandorfi, H., da Silva, R. A. B., da Silva e Silva, R., ... & Jardim, A. M. D. R. F. (2023). Green roofs are effective in cooling and mitigating urban heat islands to improve human thermal comfort. Modeling Earth Systems and Environment, 9(4), 3985-3998. [CrossRef] [Google Scholar]
  55. Brenner, J., Schmidt, S., & Albert, C. (2023). Localizing and prioritizing roof greening opportunities for urban heat island mitigation: insights from the city of Krefeld, Germany. Landscape Ecology, 38(7), 1697-1712. [CrossRef] [Google Scholar]
  56. Wang, X., Li, H., & Sodoudi, S. (2022). The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217, 109082. [Google Scholar]
  57. Chabada, M., Durica, P., & Juras, P. (2024). Experimental Analysis of the Influence of Seasonality on the Temperature Regime of Extensive Roofs in Central Europe. Buildings, 14(3), 812. [CrossRef] [Google Scholar]
  58. Seyedabadi, M. R., Eicker, U., & Karimi, S. (2021). Plant selection for green roofs and their impact on carbon sequestration and the building carbon footprint. Environmental Challenges, 4, 100119. [CrossRef] [Google Scholar]
  59. Kumar, R., & Kaushik, S. C. (2005). Performance evaluation of green roof and shading for thermal protection of buildings. Building and environment, 40(11), 1505-1511. [CrossRef] [Google Scholar]
  60. Wang, S., Li, X., Yu, H., Hao, Y., & Yang, W. (2014). Impact of the popularization of green roofs in urban areas on water quantity and quality. Chinese Journal of Applied Ecology, 25(7), 7. (in Chinese with English Abstract) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.