Open Access
Issue |
E3S Web of Conf.
Volume 540, 2024
1st International Conference on Power and Energy Systems (ICPES 2023)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 9 | |
Section | Wind Turbine and Energy Systems | |
DOI | https://doi.org/10.1051/e3sconf/202454003009 | |
Published online | 21 June 2024 |
- Margarat, G. S., Kumar, S., & Rajan, S. (2023). Forecasting Wind Energy Production Using Machine Learning Techniques. In E3S Web of Conferences (Vol. 387, p. 01007). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
- Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting Renewable Energy Generation with Machine learning and Deep Learning: Current Advances and Future Prospects. Sustainability, 15(9), 7087 [CrossRef] [Google Scholar]
- M. E. Şahin and T. K. Şahin, Renewable and Sustainable Energy Reviews, vol. 76, pp. 31–42, (2017). [Google Scholar]
- M. El-hajj, J. El-hajj, and E. Hajj, Energy Conversion and Management, vol. 150, pp. 205–215, (2017). [Google Scholar]
- X. Gao, B. Xue, and H. Chen, Energy Conversion and Management, vol. 108, pp. 372–382, (2016). [Google Scholar]
- Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. [CrossRef] [Google Scholar]
- Carbonell, J. G., Michalski, R. S., & Mitchell, T. M. (1983). An overview of machine learning. Machine learning, 3–23. [Google Scholar]
- Wang, H., Ma, C., & Zhou, L. (2009, December). A brief review of machine learning and its application. In 2009 international conference on information engineering and computer science (pp. 1–4). IEEE. [Google Scholar]
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674 [CrossRef] [Google Scholar]
- Alanne, K., & Sierla, S. (2022). An overview of machine learning applications for smart buildings. Sustainable Cities and Society, 76, 103445 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.